

The information system on basis of data manager ORACLE of steel production for increase of efficiency, control quality of workshops ESPTs-1,2 is developed and implemented at RUP "BMZ".

Д. С. САВКОВ, А. А. КАЦУБО, РУП «БМЗ»

УДК 669.

АВТОМАТИЗИРОВАННАЯ ИНФОРМАЦИОННАЯ СИСТЕМА СТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА РУП «БМЗ»

Автоматизация технологических процессов и производства на современном уровне развития производственных технологий является одним из важнейших условий на пути удешевления производства и повышения качества продукции.

До создания и внедрения информационной системы автоматизация в сталеплавильном производстве существовала только на втором уровне, т.е. на уровне технологических агрегатов. При этом не было возможностей учета затрат и расчета себестоимости по цехам и сталеплавильному производству в целом. Встала проблема создания системы автоматизации третьего уровня, т.е. автоматизации на уровне цехов и сталеплавильного производства. Программистами отдела АСУ сталеплавильного производства была разработана и внедрена информационная система на основе СУБЛ ORACLE для руководящего и технологического персонала сталеплавильных цехов, которая предназначена для повышения оперативности, качества учета и контроля работы цехов ЭСПЦ-1,2 РУП «БМЗ», и в частности, для ввода/получения информации, касающейся сталеплавильного производства.

Данная система является связующим звеном между всеми технологическими системами АСУТП сталеплавильных цехов (тремя дуговыми электросталеплавильными печами, двумя установками печь—ковш, включая вакууматор и дегазатор и тремя машинами непрерывного литья заготовок) и общезаводской системой высшего уровня SAP/R3, с которой поступает вся справочная информация и на которую передается необходимая обработанная информация сталеплавильных цехов.

Благодаря хорошо развитому уровню автоматизации технологических систем АСУТП сталеплавильного производства удалось на вновь созданную информационную систему передавать данные с технологических систем в режиме реального времени, которые отображаются в отдель-

ной маске «Состояние агрегатов» (рис. 1). Причем из данной маски можно посмотреть оперативное состояние технологических агрегатов в режиме реального времени, а также отчет по любой плавке, обрабатывавшейся на агрегате.

Кроме передачи данных о текущем состоянии технологических агрегатов на информационную систему, по окончании обработки плавки на агрегате передаются, что более важно, и основные конечные технологические данные по каждой плавке со всех агрегатов. По окончании разливки работник ОТК с помощью модуля автоматизированного контроля качества назначает плавку, подтверждая тем самым достоверность автоматически полученных с технологических систем АСУТП данных.

Программные модули информационной системы представляют собой системы диалогов, отчетов, диаграмм и справочников, которые в свою очередь состоят из ряда отдельных модулей (рис. 2).

Доступ к объему вводимой/получаемой информации ограничивается в зависимости от пользователя.

Одним из основных модулей данной системы является модуль учета затрат на производство (по-плавочно, по маркам стали, калькулируемым группам, заказам, бригадам и агрегатам) с расчетом оперативной себестоимости. Так как на информационной системе формируется подробная база данных, получаемых с технологических систем об использовании металлошихты, ферросплавов, добавочных, вспомогательных материалов, а также энергоресурсов (сред) по-плавочно поагрегатно, то на системе создано множество отчетов, позволяющих оперативно оценивать как оперативные затраты отдельной продукции (марка. калькулируемая группа, технологический заказ), так и сравнивать эффективность работы отдельных бригад и участков в области снижения себестоимости.

			Coci	ГОЯНИ	e ai	рега	TOB					
06	новление		28 Фes	раль 2	007 i	. 15.	:23:44					
	ПЛАВКА	MAPKA	нач	844		AEA	coc	гояние	энгег	ия ока	FOPE	O TEM
дсп-1	11185-17	Crinc(1531	15:18	СКРАП	JAE	IPABKA	выкл	15:18	0	O	выки	1 139
дсп-2	21152-17	¥500(1507)	15:1	СКРАП	2 КОРЗИНА		вкл	45:20	1649	9 0	өкл	820
дсп-з	30987-16	IIIX15CF~483	15:9	CKPATI	1 КОРЗИНА		вкл	15:20	1857	0	9КЛ	306
	ПЛАВКА	MAPKA	нач	KOBIII	BFC	r	Mn	Si	5	APLOH	HMI	BP4 M9
АРГ-1	11184		0:0	0	106	O .	0	0	0	o o	1580	15:18
APT-2	21151		0:0	0	117	136	1064	342	46	1	1637	15:2
C-19A	30986		0:0	0	O	0	6	0	0	0	0	0:0
	11184 (Stine 6							10986	42C:4M	ο Σ 24	252
	планса	марка	нач	KORIII		BCC	ОБРА	БОТКА	эмп		BAK	TEM
FIK-3	21151-28	Y500	15:19	31		118		0				1.59
fik-2	30984	42Cr4No2-1	15:16	29		106		6	0			0
RH	20984		0:0	0	T	0		a			0	0
VD	30646		0:0	0		ō		0			0	0
			3	0985 42	CR4M()2-1	11					100
	BRABKA	MAPKA	HAY KO	HAS KORREDOC OCT. D.K.				PYSISE		и (скорость)		коне
48/A3-3	21150-5	17 Y500	34:44 2	5 114	39 1	3 67	6 2	20 220	210	210 2	10 210	15:4
чниз-2	11183-9	io Crinc	15:23	110 1	ai i	0	5 2	70 260	0	260 2	70 230	16:3
чнлэ-э	30983-1	14 420/4Ho2-1	14:36 2	7 1107	22 i	8 67	3 5	5 0	56	55	1518	15:4

Рис. 1. Состояние технологических агрегатов сталеплавильного производства

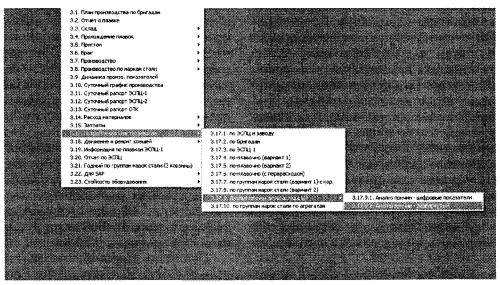


Рис. 2. Система отчетов информационной системы РРМ

Данный модуль уже приносил экономический эффект, позволяя оперативно заменять виды металлошихты и других материалов на конкретные заказы, марки стали. Отдельным разделом в данном модуле является контроль потребления электроэнергии как одного из наиболее затратных компонентов при выплавке стали. Созданы отчеты, которые не только фиксируют затраты электроэнергии, но и помогают оценить, из-за чего произошло превышение потребления электроэнергии на конкретной плавке (рис. 3).

В информационной системе производится учет и обработка с выдачей отчетов, автоматически обнаруженных системами АСУТП, простоев ДСП с их причинами и виновниками.

В систему посредством диалогов заносятся все виды брака, относящихся к сталеплавильным цехам. Как следствие, на системе созданы отчеты и диаграммы, которые позволяют оценить причины и виды брака, установить виновников брака как по-плавочно, так и по видам продукции или бригадам и службам.

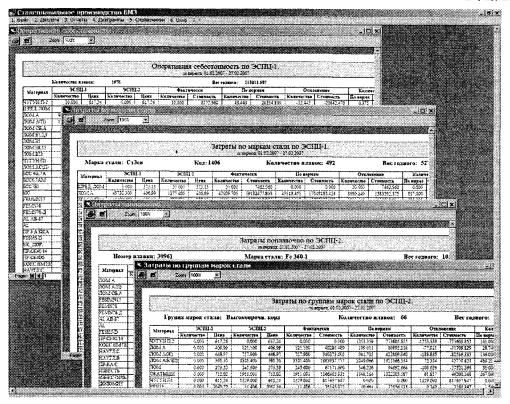


Рис. 3. Оперативная себестоимость

Информационная система также следит и за процентом выполнения плана как в целом по цехам, так и по отдельным агрегатам и бригадам.

Существенным модулем в информационной системе являются склады заготовок сталеплавильных цехов (рис. 4). После назначения плавки

работником ОТК плавка попадает в базу склада заготовок. Далее посредством диалогов проводятся все операции с плавкой или ее частью. Производится отгрузка заготовок потребителю с формированием сертификата качества, передаются заготовки на один из трех прокатных станов с

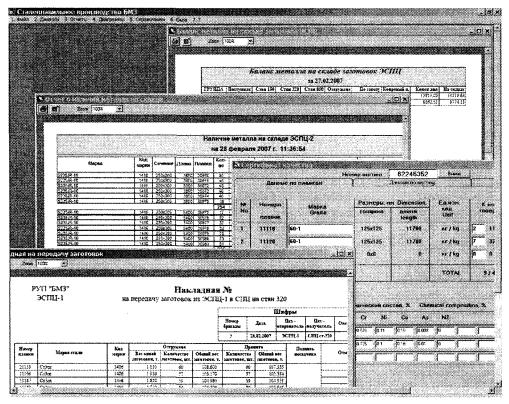


Рис. 4. Склад заготовок

формированием накладной на перемещение и паспорта качества плавки или производится иное внутризаводское перемещение. Плавка или ее часть может быть переназначена в другую марку стали, заготовки могут быть порезаны на части. В результате все действия с заготовками в системе фиксируются и можно всегда проследить все операции. В системе строго отслеживается баланс металла как по массе, так и по количеству заготовок.

Создан отдельный модуль для слежения за движением ковшей с указанием времени каждой операции. Все данные, кроме данных, относящихся к ремонту ковша, получаются автоматически с технологических систем.

В данной системе предусмотрен учет стойкости оборудования, установленного на агрегатах сталеплавильных цехов. Посредством диалога выбирается тип оборудования и указывается момент установки, далее расчет наработки осуществляется автоматически.

В информационной системе создана широкая система отчетов, позволяющая проследить за динамикой производства в целом, а также за различными показателями работы агрегатов сталеплавильного производства.

Отчет «Суточный график производства» отображает задание для работы сталеплавильных цехов на сутки по техзаказам с указанием количества плавок.

Ежесуточно ОТК в системе формирует рапорт по качеству сталеплавильных цехов. Отчет о плавке отображает общую информацию по конкретной плавке (рис. 5).

Группа отчетов «Прохождение плавок» позволяет просмотреть динамику прохождения плавок по сталеплавильным печам и машинам непрерывного литья заготовок, а также прохождение плавок с превышенными временными показателями по агрегатам сталеплавильного производства.

Группа отчетов «Производство» позволяет получить информацию о производстве на агрегатах сталеплавильного производства — плановое, фактическое и отклонение от плана.

Для большей наглядности создана группа диаграмм: производство, выполнение плана, брак, показатели работы печей (рис. 6, 7).

Существует ряд локальных отчетов для решения конкретных узких задач.

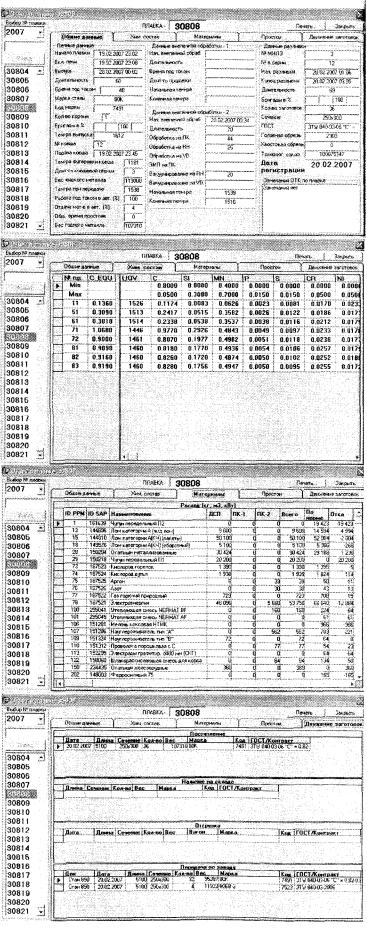


Рис. 5. Отчет о плавке

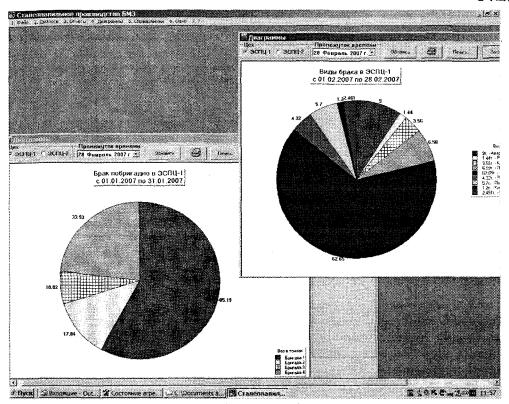


Рис. 6. Диаграммы брака

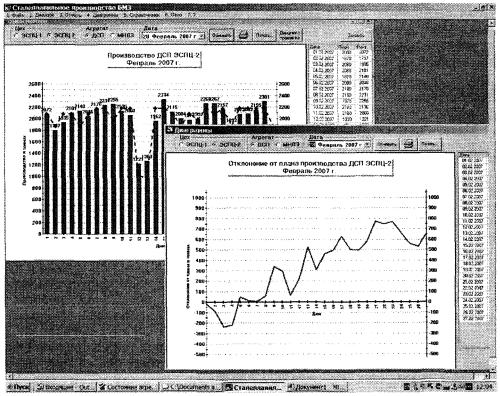


Рис. 7. Диаграммы контроля выполнения плана

Благодаря подробности и гибкости баз данных, на основе которых создана данная система, предоставляется широкое поле для оперативного развития системы автоматизации на уровне цехов и сталеплавильного производства в целом. Развитие и доработка системы проводятся и в данный

момент по мере возникновения новых требований к уровню автоматизации сталеплавильного производства и предприятия в целом. К информационной системе сталеплавильного производства РУП «БМЗ» уже сейчас подключено около 200 пользователей.