

The list of the main types of the production, produced by OAO "NIIM" is given.

В. И. ШКУРКИН, Ю. А. АГЕЕВ, С. И. АХМАНАЕВ, ОАО «НИИМ», г. Челябинск

УДК 621.74

# ПРОИЗВОДСТВО МОДИФИКАТОРОВ ЧУГУНА В ОАО «НИИМ»

ОАО «Научно-исследовательский институт металлургии» — российское предприятие. В состав ОАО «НИИМ» входят научно-исследовательский институт и ферросплавный цех.

Научно-исследовательский институт металлургии был создан в 1958 г. и в МЧМ СССР выполнял функции головной организации по электросталеплавильному и ферросплавному производству. В 1980 г. в состав института в качестве опытно-промышленной базы вошел ферросплавный цех, предназначенный для выпуска товарной продукции и освоения технологий производства новых видов ферросплавов. В 1994 г. институт был акционирован и преобразован в ОАО «НИИМ».

Научные подразделения института осуществляют научное обеспечение собственного производства и на договорной основе выполняют научно-исследовательские работы в области металлургии стали и сплавов, ферросплавного и литейного производств, гидрометаллургии, стандартизации и метрологии. При институте создан и аккредитован испытательный центр для проведения сертификационных исследований сырья, химического и гранулометрического состава, микро- и макроструктуры, физико-механических свойств и других классификационных группировок продукции и видов испытаний.

Институт располагает опытно-промышленным прокатным станом «250», позволяющим отрабатывать режимы прокатки новых материалов и подготавливать опытные партии горячекатаных профилей.

Химическая лаборатория института осуществляет аналитический контроль выпускаемой продукции и обеспечивает химическими анализами исследовательские работы научных подразделений.

Институт выполняет функции Национального (Российского) технического комитета ТК 8 и

действующего в рамках СНГ межгосударственного технического комитета МТК 8 «Ферросплавы», а также международного технического комитета ИСО ТК 132 по стандартизации ферросплавов. Поэтому разрабатываемые институтом стандарты и технические условия, в том числе и на продукцию собственного производства, отвечают и международным требованиям.

Отработка технологий производства новых лигатур и модификаторов, а также выпуск малых партий товарной продукции осуществляются на металлургическом участке института, оснащенном индукционными печами и оборудованием для дробления и фракционирования выплавляемых материалов.

Ферросплавный цех был построен по проекту института «Гипросталь» и сдан в эксплуатацию в 1973 г. Состоит из двух отдельно стоящих корпусов: главного корпуса и шихтового двора. Главный корпус, двухэтажное здание, состоит из двух отделений: печного и остывочного. В печном отделении установлены три дуговые и две индукционные печи общей установленной мощностью 7,9 МВА. Печи оборудованы двухступенчатой газоочисткой. Остывочное отделение имеет в своем составе участок дробления и фракционирования готовой продукции и участок для производства брикетов. В остывочном отделении производства упаковка, взвешивание и отгрузка готовой продукции.

Шихтовый двор состоит из склада шихты, дозировочного отделения, двух узлов дробления и рассева ферросплавов, участка окомкования пылевидной шихты. Для оперативного поплавочного контроля состава модификаторов в ферросплавном цехе установлен высокопроизводительный рентгеновский микроанализатор СРМ-25.

Производственные мощности цеха позволяют получить до 10 000 т модификаторов, ферросплавов и лигатур в год. Перечень основных видов продукции, выпускаемой ОАО «НИИМ», представлен ниже.

## Сфероидизирующие модификаторы для производства отливок из высокопрочного чугуна с шаровидным графитом

|          |          |          | Массовая доля | , %   |     |          |      |             |
|----------|----------|----------|---------------|-------|-----|----------|------|-------------|
| Марка    | Mg       | Ca       | P3M           | Si    | Al  | P        | Fe   | Фракция, мм |
|          |          | в пр     | еделах        |       |     | не более |      |             |
| -        |          | T        | У 14-5-134-86 |       |     |          |      |             |
| ФСМг9    | 8,5–10,5 | 0,2-1,0  | 0,3-1,0       | 50–60 | 1,2 |          | ост. |             |
| ФСМг7    | 6,5–8,5  | 0,2-1,0  | 0,3-1,0       | 45–55 | 1,2 | _        | ост. |             |
| ФСМг5    | 4,5–6,5  | 0,2-1,0  | 0,3-1,0       | 45-55 | 1,2 | _        | ост. |             |
| ФСМг5Ла  | 5.0-6.0  | 0.4-0.6  | La 0,25-0,4   | 44-48 |     |          |      | 1-5, 5-20   |
| ФСМг4    | 3,5–4,5  | 0,2-1,0  | 1,0-2,0       | 45–65 | 1,2 | -        | ост. |             |
| ФСМг3    | 2,5-3,5  | 0,2-1,0  | 1,0-2,0       | 55-70 | 2,0 | _        | ост. |             |
|          |          | 7        | ГУ 14-5-39-88 |       |     |          |      |             |
| CK15Mr9  | 9,0-12,0 | 12,0-20  | _             | 40    | 2,0 | 0,04     | ост. | По          |
| CK15Mr6  | 6,0-9,0  | 12,0–20  | -             | 40    | 2,0 | 0,04     | ост. | требованию  |
| CK10Mr9  | 9,0-12,0 | 6,0-12,0 | -             | 40    | 2,0 | 0,04     | ост. | заказчика   |
| CK10Mr6  | 6,0-9,0  | 60,-12,0 | _             | 40    | 2,0 | 0,04     | ост. |             |
|          |          | T        | У 14-5-205-89 |       |     |          |      |             |
| ФСМг6К2Р | 6,0-7,0  | 2,0-3,0  | 1,0-2,0       | 43–52 | 2,0 | _        | ост. | 1-5,5-20    |

### Модификатор для получения чугуна с вермикулярным графитом. ТУ 14-5-248-01

|              |         |         | Mace    | совая доля, % |       |         |      |             |
|--------------|---------|---------|---------|---------------|-------|---------|------|-------------|
| Марка        | Mg      | Ca      | P3M     | Ti            | Si    | Al      | Fe   | Фракция, мм |
|              |         |         | В       | пределах      |       |         |      |             |
| FeSiMg416Ti4 | 3,7–4,3 | 0,8-1,2 | 5,5-6,4 | 3,5–4,5       | 45–48 | 1,5-2,8 | ост. | 3,2-10      |

### Графитизирующие модификаторы

|          |         |            | Ma      | ассовая до | ля, %   |          |         |      |              |
|----------|---------|------------|---------|------------|---------|----------|---------|------|--------------|
| Марка    | Ba      | Si         | Sr      | Al         | Zr      | Mn       | Ca      | Fe   | Фракция, мм  |
|          |         | в пределах |         |            | I       | не более |         |      |              |
|          |         |            | ТУ      | 14-5-160-  | 84      |          |         |      |              |
| ФС60Ба7  | 5,0-7,0 | 60-70      | _       | 3,0        |         | 0,4      | _       | ост. | 3,2–10;      |
| ФС65Ба1  | 0,5–2,0 | 60–70      | _       | 3,0        |         | 0,4      | _       | ост. | 0-3,2; 0-1,0 |
| ФС65Ба4  | 2,0-4,0 | 60–70      | _       | 3,0        |         | 0,4      | _       | ост. | брикет       |
|          |         |            | ТУ      | 14-5-208-  | 89      |          |         |      |              |
| ФС75Ст   | _       | 72–80      | 0,6–1,5 | 0,5        |         | _        | 0,2     | ост. |              |
| ФС75СтЦр | _       | 72–80      | 0,6–1,0 | 0,5        | 1,0-1,5 | _        | 0,1     | ост. | 3,2–10       |
| ФС75СтК  | _       | 72–80      | 0,6-1,5 | 0,5        |         | -        | 0,2-1,0 | ост. |              |

Модификаторы ФС75Ст и ФС75СтЦр используются для предотвращения отбела при изготовлении тонкостенных отливок из чугуна. Расход

модификаторов с Sr и Ba в 2-3 раза меньше, чем ферросилиция  $\Phi$ C75.

### Силикокальций с барием. ТУ 14-4-139-89

|          |                   |            |         | Массовая до | оля, % |          |     |      |             |
|----------|-------------------|------------|---------|-------------|--------|----------|-----|------|-------------|
| Марка    | Марка Ca Ba Al Si |            |         |             | P      | Cr       | Mn  | Fe   | Фракция, мм |
|          |                   | в пределах |         |             |        | не более |     |      |             |
| СК5Ба5   | 3,0-6,0           | 3,0-6,0    | 1,5–3,5 | 60          | 0,04   | 0,3      | 0,3 | ост. |             |
| СК7Ба7   | 6,0–9,0           | 6,0–9,0    | 1,5–3,5 | 55          | 0,04   | 0,3      | 0,3 | ост. | 1–10, 1–5   |
| СК10Ба10 | 9,0-12,0          | 9,0-12,0   | 1,5-3,5 | 55          | 0,04   | 0,3      | 0,3 | ост. |             |

### Лигатура с РЗМ. ТУ 14-5-136-87

| Марка     | Марка P3M Si |       | I       | Al      | Fo   | Фракция, мм |
|-----------|--------------|-------|---------|---------|------|-------------|
|           | LOIM         | 31    | кл.А    | кл.Б    | re   |             |
| ФС30Р3М20 | 20–30        | 30-35 | 2.0-3.0 | 3.0-6.0 | ост. | 1-17        |

Лигатуры с Са, Ва и РЗМ применяют в производстве труб для магистральных нефте- и газопроводов, запорной арматуры, деталей хо-

довой части гусеничных машин и других металлоизделий, работающих при низких температурах.

### Смесевые модификаторы. ТУ 14-5-167-87

|         |          | Массовая доля, % |       |         |      |             |  |  |
|---------|----------|------------------|-------|---------|------|-------------|--|--|
| Марка   | Si общий | С                | SiC   | Ca      | Fe   | Фракция, мм |  |  |
| ФС30У60 | 20-40    | 55-65            | _     | 0,5-3,0 | ост. | 0,3-3,2     |  |  |
| ФС50У35 | 45–55    | 30-40            | 30-40 | 2,0-6,0 | ост. | 0,3-3,2     |  |  |

Смесевые модификаторы устраняют карбидообразование в чугунах с пониженным содержанием кремния. Их применение обеспечивает одина-

ковые свойства металла в различных сечениях тонкостенных отливок.

### Сульфидирующие материалы для получения строго заданного содержания серы в чугуне и автоматных сталях

| Monya |       | Массовая доля, %         |       | Фракция, мм |
|-------|-------|--------------------------|-------|-------------|
| Марка | S     | Fe                       | Mn    | Фракция, мм |
|       | Φ     | ерросера. ТУ 14-5-223-90 | )     |             |
| ФСу25 | 22–27 | ост.                     |       | 0-50        |
| ФСу30 | 27–32 | ост.                     |       | 0–50        |
|       |       | Сульфид марганца         |       |             |
| МнСу  | 30-35 |                          | 55–60 | 0-50        |

#### Силикокальций с алюминием

|          | Массовая доля, % |       |          |     |      |      |  |  |  |  |
|----------|------------------|-------|----------|-----|------|------|--|--|--|--|
| Марка    | Ca               | Si    | Al       | C   | S    | P    |  |  |  |  |
|          |                  | в пре | еделах   |     | не б | олее |  |  |  |  |
| ФСК15А2  | 10,0-20,0        | 40-60 | 1,0-3,0  | 1,0 | 0,1  | 0,03 |  |  |  |  |
| ФСК15А5  | 10,0-20,0        | 40-60 | 3,0-60,0 | 1,0 | 0,1  | 0,03 |  |  |  |  |
| ФСК15А7  | 10,0-20,0        | 40–60 | 6,0–9,0  | 1,0 | 0,1  | 0,03 |  |  |  |  |
| ФСК15А11 | 10,0-20,0        | 40–60 | 9,0-13,0 | 1,0 | 0,1  | 0,03 |  |  |  |  |

#### Силикотермический силикокальций с ванадием. ТУ 14-386-29-89

|         |        | Массовая доля, % |       |     |      |     |          |      |     |      |  |  |
|---------|--------|------------------|-------|-----|------|-----|----------|------|-----|------|--|--|
| Марка   | Ca     | V                | Si    | Ti  | Mn   | Al  | C        | S    | P   | Fe   |  |  |
|         |        | в пределах       |       |     |      |     | не более |      |     |      |  |  |
| СК15Вд2 | 10-20  | 1,0-3,0          | 30–60 | 2,0 | 3,0  | 2,0 | 1,0      | 0,05 | 0,2 | ост. |  |  |
| СК15Вд8 | 10-20  | 6,0-10,0         | 30–60 | 6,0 | 10,0 | 2,0 | 1,0      | 0,05 | 0,2 | ост. |  |  |
| СК7Вд8  | 5,0-10 | 6,0-10,0         | 3060  | 6,0 | 10,0 | 2,0 | 1,0      | 0,05 | 0,2 | ост. |  |  |

### Лигатура никель-магний-церий. ТУ 14-2Р-338-2000

| Macco | вая доля основных эл | ементов, % | Массовая доля примесей, % |       |     |     |      |       |  |  |
|-------|----------------------|------------|---------------------------|-------|-----|-----|------|-------|--|--|
| Ni    | Mg                   | Ce         | С                         | S     | Cu  | Fe  | Mn   | всего |  |  |
| OCT   | 14.0-17.0            | 0.4-0.6    | 0.5                       | 0.003 | 0.4 | 1.0 | 0.04 | 1.5   |  |  |

### Лигатура железо-никель-магний-церий. ТУ 14-5-305-2005

| Macco                     | вая доля основных эл | ементов, % | Массовая доля примесей, % |     |      |     |     |  |  |
|---------------------------|----------------------|------------|---------------------------|-----|------|-----|-----|--|--|
| Ni Mg Ce                  |                      |            |                           | S   | Fe   | Mn  | Р   |  |  |
| 43,0-46,0 5,0-6,0 1,0-2,0 |                      |            |                           | 2,3 | ост. | 0,5 | 0,3 |  |  |

### Молибденовая лигатура

| Manua     |       | Массовая доля основных элементов, % |      |              |  |  |  |
|-----------|-------|-------------------------------------|------|--------------|--|--|--|
| Марка     | Mo    | Si                                  | Fe   | S, P         |  |  |  |
| ФСи12Мо40 | 40-45 | 12–14                               | ост. | не более 0,2 |  |  |  |

Лигатура может быть использована для легирования чугунов, конструкционных, инструментальных и других марок сталей. Более низкая температура плавления лигатуры (1500 °C) по

сравнению со стандартным ферромолибденом ( $t_{\text{пл}} = 1700-1800$ °C) обеспечивает более полное ее усвоение металлом. Лигатура может поставляться в дробленом и фракционированном виде.

### **2006/101**

| Лигатуры | на | основе | меди | для  | модифицирования | серого | чугуна  |
|----------|----|--------|------|------|-----------------|--------|---------|
|          |    | ~~~~   | **** | A-40 | MOMINDODAMIN    | CCPOIG | 1313114 |

| Марка        | Массовая доля, % |       |      |       |     | Φ    |             |
|--------------|------------------|-------|------|-------|-----|------|-------------|
| iviapka      | Cu               | Mn    | Cr   | Mo    | V   | Fe   | Фракция, мм |
| Ку45Мн10Х6Мо | 45–50            | 10-22 | 7–12 | 1,5–2 |     | ост. | 1–10        |
| Ку45Мн10Х7   | 45–50            | 10-22 | 7–12 |       |     | ост. | 0,5–15      |
| Ку45Мн5Х5Вд  | 45-50            | 5–7   | 7–12 |       | 1-3 | ост. | 0,5–15      |

Чугун легированный. ТУ 14-5-300-2004

|         | Массовая доля, % |       |     |     |          |     |      |  |
|---------|------------------|-------|-----|-----|----------|-----|------|--|
| Марка   | C                | Ni    | Cr  | Si  | S        | P   | Fe   |  |
|         | в пределах       |       |     |     | не более |     |      |  |
| 4H5X3C4 | 2,5-3,5          | 4,5-6 | 2–3 | 3–4 | 0,2      | 0,2 | ост. |  |

Реализация продукции в условиях жесткой конкуренции потребовала значительных усилий по совершенствованию качества выпускаемых модификаторов и лигатур. В течение 2004 — 2005 гг. на предприятии разработана и внедрена система менеджмента качества (СМК) ОАО «НИИМ». В июле 2005 г. СМК была сертифицирована органом по сертификации систем менеджмента качества НП «Сертификационный центр автотракторной техники» на соответствие требованиям ГОСТ Р ИСО 2001-9001. Основные виды продукции, выпускаемой ОАО «НИИМ», сертифицированы на соответствие требованиям технических условий.

При разработке и внедрении СМК особое внимание было уделено обеспечению максимально высокой достоверности и точности контроля химического состава продукции. Как известно, общая погрешность определения химического состава партии ферросплава складывается из погрешностей отбора ( $\sigma_{or}$ ), подготовки ( $\sigma_{n}$ ) пробы для химического анализа и использованного метода химического анализа ( $\sigma_{ur}$ ):

$$\sigma_{\text{общ}}^2 = \sigma_{\text{от}}^2 + \sigma_{\pi}^2 + \sigma_{\text{m}}^2 \; . \label{eq:sigma_obj}$$

Исследования показали, что отбор и подготовка проб вносят наибольший вклад в общую погрешность опробования ферросплавов. Обычно

$$\frac{\sigma_{or}^2 + \sigma_{\pi}^2}{\sigma_{oful}^2} = 0,6-0,7$$
, поэтому при аналитическом

контроле необходимо строго регламентировать алгоритмы этих операций и их погрешности.

Для контроля химического состава массовых ферросплавов в промышленности действуют отечественные и международные стандарты на методы отбора и подготовки проб. Разработчиком этих стандартов как отечественных, так и международных, является ОАО «НИИМ». Данные стандарты предназначены в основном для арбитражных целей и должны обеспечивать воспроизводимые у поставщика и потребителя алгоритмы пробоотбора готовой продукции при контроле ее на содержание ведущего элемента-показателя качества. В целях установления точностных характеристик

пробоотбора по остальным элементам, а не только по показателю качества, в ОАО «НИИМ» разработаны и используются методические указания МУМО 14-179-56-2002, которые развивают содержание ранее действующих методических указаний МУМО 14-179-56-86. Этот документ регламентирует порядок разработки и аттестации нестандартизованных методик отбора и подготовки проб для маркировочного контроля химического состава ферросплавов.

В течение последних трех лет в институте проведены исследования, разработаны и аттестованы методики отбора и подготовки проб на основные виды производимых в ОАО «НИИМ» модификаторов.

Внедрение СМК в ОАО «НИИМ» потребовало проведения не только мероприятий, регламентируемых ГОСТ Р ИСО 9001-2001, но и дополнительных мер по развитию предприятия:

- для контроля химического состава модификаторов приобретен многоканальный высокочувствительный атомно-абсорбционный спектральный фотокалориметр;
- реорганизован отдел технического контроля (ОТК);
  - создан отдел менеджмента качества;
- ведутся работы по сертификации СМК в сертификационном органе «ТЮФ-Серт» (Германия).

В настоящее время ОАО «НИИМ» — крупнейший в России производитель модификаторов и лигатур, используемых в производстве чугуна и сталей. Технологическое оборудование ферросплавного цеха и металлургического участка института позволяют получать продукцию любого заданного химического и фракционного состава.

По отзывам потребителей (ОАО «ВАЗ», г. Тольятти, ОАО «ELDIN», г. Ярославль, ОАО «МЛЗ», г. Мценск и др.) модификаторы ОАО «НИИМ» по своему качеству превосходят аналогичную продукцию других российских производителей и не уступают модификаторам зарубежных фирм.

При заключении договоров и принятии обязательств мы руководствуемся гибкой системой, учитывающей пожелания потребителей нашей продукции.