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In this article there is examined one of the actual 
problems of the mathematical modelling of thermal 
processes ~  optimization of numerical solution of the 
thermal conduction equation. The dynamic increase of 
similarity groups using the new method is reflected.
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о новом ПОДХОДЕ к РЕШЕНИЮ ТЕПЛОВОЙ 
ЗАДАЧИ ОХЛАЖДЕНИЯ 3D ОБЪЕКТОВ

При моделировании тепловых полей трехмер­
ных объектов важнейшей характеристикой явля­
ется время счета. Оно может стать критическим, 
если объект разбит на большое количество эле­
ментов (больше 100 000) и при этом моделиру­
емое время счета велико. Подобные задачи очень 
широко распространены при изучении процессов 
нагрева и охлаждения промышленных сплавов, 
протекающих в большом временном промежутке. 
В этом случае время машинного счета является 
серьезной проблемой, затрудняющей решение 
конкретных прикладных задач, связанных с оп­
тимизацией режимов нагрева. В настоящей работе 
развивается подход, который может позволить 
существенно снизить временные затраты машин­
ного времени на обработку 3D объектов со 
сложной геометрией в сравнении с использовани­
ем традиционного метода конечных разностей.

Цель данной работы — разработка нового 
метода решения трехмерной тепловой задачи, 
основанного на идее группирования температур­
но-временных зависимостей элементов объекта, 
уменьшающего необходимое количество времени 
для моделирования процессов охлаждения и на­
грева.

В качестве математической модели использова­
ли трехмерное уравнение теплопроводности Фу­
рье-Кирхгофа:
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где с -  теплопроводность; р — плотность; Х(Т) 
- теплоемкость, х, у, z ~ координаты рассчиты­
ваемой области объекта и среды; Дх,> ,̂г,х) 
температура точки с координатами Ху Уу zb  момент 
времени т.

Применив метод конечных разностей к урав­
нению (1), получим рекуррентную формулу пер­
вого порядка точности для расчета температуры 
[Ц:
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в дополнение к традиционному расчету по 
температуре был разработан алгоритм (“метод 
группирования элементов”), позволяющий груп­
пировать элементы 3D объекта на основе темпе­
ратурных зависимостей и уменьшать число “про­
ходов” по пространственному объекту в заданные 
интервалы времени. Сущность этого метода своди­
лась к следующему. Первоначально, используя 
классическое решение тепловой задачи (т.е. после­
довательное вычисление значений температуры 
для всех элементов клеточного автомата), рассчи­
тывали состояния модели на протяжении к тактов. 
Вычисленные значения сохраняли и затем по 
рассчитанным данным проводили поиск областей, 
клетки которых имели одинаковые (или близ­
кие) значения на протяжении всего времени 
счета (от начала моделирования до текущего 
момента времени /̂ ), т.е. такие области, для 
которых выполнялось следующее условие:

(1) где 7j(х,.у„г,) и Tl̂ x..yj.zp -  температура клеток с 
координатами х, у., и х., у.̂ . Zj соответственно 
на ^-м такте расчета; е — допустимая погрешность 
при сравнении температур клеток.

Если при тактах / и у (/ > /) количество 
групп, а следовательно, и их состав равны, то 
классический расчет прекращался. На втором эта­
пе, после того как обнаружено N устойчивых 
групп, алгоритм переводится в режим группиро­
ванного расчета, при котором значение вычисля­
ется только для одной клетки из группы, а затем 
рассчитанное значение присваивается остальным
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клеткам группы. Таким образом, расчет прово­
дился не для всех клеток, участвовавших в

расчете, а только для N. На рис. 1 приведена блок- 
схема описанного выше алгоритма.

Рис. 1. Алгоритм расчета /-го  такта по м етоду группирования

В процессе расчета вьшисляли долю групп 
от общего числа элементов:

р - ^
* м  ’ (4)

где -  число обнаруженных групп на ^-м такте 
расчета; М— общее число элементов, участвую­
щих в расчете (форма + объект).

Для сравнительной оценки погрешности ре­
зультатов моделирования по температуре, получен­
ных с помощью метода группирования, развивае­
мого в статье, и классического метода конечных 
разностей были использованы следующие формулы:
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где — значение температуры в точке с
координатами х,у,^, рассчитанное по методу груп­
пирования; , -  значение температуры в точке 
x,y,z, рассчитанное традиционным способом.

Метод группирования был реализован в виде 
программы для ПЭВМ. Входными данными явля­
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ются пространственный размер сетки, временной 
шаг и теплофизические характеристики формы и 
объекта. Программа позволяет проводить модели­
рование процессов теплообмена сложных про­
странственных объектов. Программное обеспече­
ние написано на языке программирования высо­
кого уровня -  Object Pascal в визуальной среде 
быстрой разработки приложений Delphi 6.0 для 
32-разрядных операционных систем семейства 
Windows.

Тестирование оптимизированного варианта 
алгоритма расчета и его сравнение с классичес­
ким алгоритмом проводили на трех тестовых 
объектах с разной степенью симметричности 
(«крест», «кольцо» и «пирамида») и двух про­

мышленных отливках («диск» и «патрубок»). Плос­
костные сечения тестовых объектов показаны на 
рис. 2, а 3D изображения промышленных объек­
тов — на рис. 3. Моделируемые объекты принима­
ли изготовленными из алюминия со следующими 
свойствами: теплоемкость А. = 40 Вт/(м К), теп­
лопроводность с = 838 Дж/(кг К), плотность р = 
2380 кг/м\ В качестве среды охлаждения была 
выбрана стальная форма с характеристиками: X = 
40 Вт/(м К), с = 524 ДжДкгК), р = 7600 кг/мК 
Начальная температура объектов = 800 °С, 
температура среды = 20 °С. Для расчета исполь­
зовали компьютер со следующими характеристи­
ками: P-IV -1,5 Гц, 256 Мб ОЗУ, ОС Windows 
2000.
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Рис. 2. Изображения продольных сечений 3D объектов типа “крест” (а), “кольцо” (б) и “пирамида” (в)

а б
Рис. 3. Трехмерные изображения промышленных отливок типа “диск” (а) и “патрубок” (б)
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Для тестовых объектов моделирование процес­

са охлаждения проводили для первых 50 с. Вре­
менной шаг Ат принимался равным 0,05 с, 
пространственный шаг Ах = Aj; = = 0,1 мм.
На рис. 4 представлены зависимости роста долей 
групп для каждого из тестовых объектов.

Затраты машинного времени на расчет объек­
тов традиционным методом и методом группиро­
вания приведены в табл. 1. Как видно из рис. 4 
и таблицы, алгоритм эффективно использует 
симметричность объекта (“крест” и “кольцо”) и 
не ухудшает временные показатели для несиммет­
ричных объектов (“пирамида”).

—  Пирамида
—  Кольцо 
" Крест

Рис. 4. Диаграмма роста долей групп для объектов с различ­
ной степенью симметричности

Та б лица  1 . Результаты расчета тестовых объектов и их пространственные характеристики

Объект Число элементов (форма + 
объект)

Время расчета х, с
традиционный метод метод группирования

Крест 4 6 2 4 + 2 3 7 6 = 7 0 0 0 35 18
Кольцо 3 2 4 0 + 7 3 9 5 = 1 0 6 3 5 56 34

Пирамида 3 9 8 8 + 7 0 1 5 = 1 1 0 0 3 57 54

Динамика изменения погрешностей при ис­
пользовании метода группирования по сравнению

с традиционным методом расчета для тестовых 
объектов показана на рис. 5.

-Омакс
-Осредн

-Омакс
-Осредн

Рис. 5. Диаграммы изменения погрешности тестовых объектов “крест”(а), “кольцо” (б) и “пирамида” (в)

Высокую эффективность метод группирова­
ния показал также и при расчете промышленных 
отливок. Ниже представлены соответствующие 
результаты численного моделирования традици­
онным методом и методом группирования для 
промышленных объектов со сложной простран­
ственной геометрией. Для детали типа “диск” 
расчет проводился для 5000 с, а для детали типа 
“патрубок” -  для 6000 с. Временные шаги и шаги

по пространству для обоих объектов были равны­
ми: Ах =1 с. Ах = Ау = Az = 1 мм. Из табл. 2 
видно, что выигрыш во времени счета при 
использовании нового метода оказался существен­
ным. Для объекта типа “диск” он составил более 
40 %, а для объекта типа “патрубок“ -  более 
25 %. В то же время погрешность, привносимая 
методом, оказалась в приемлемых границах и не 
превысила 3,5 %.
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Таблица  2. Результаты расчета промышленных объектов и их пространственные характеристики

Объект Число элементов (форма + 
объект)

Время расчета т, с
традиционный метод метод группирования

Крест 4 6 2 4 + 2 3 7 6 = 7 0 0 0 35 18

Кольцо 3 2 4 0 + 7 3 9 5 = 1 0 6 3 5 56 34

Пирамида 3 9 8 8 + 7 0 1 5 = 1 1 0 0 3 57 54

-  Патрубок 

-Диск

Рис. 6. Диаграмма роста долей групп для объектов типа “диск” и “патрубок”

-Омакс
-Осредн

- Омакс 
-Осредн

Рис. 7. Диаграммы изменения погрешности объектов: а -  “диск”; б — “патрубок”

Таким образом, проведенные расчеты показа­
ли, что независимо от сложности пространствен­
ной конфигурации 3D объекта предлагаемый 
метод группирования в его применении к тепло­
вой задаче может снизить затраты машинного 
времени на расчете в среднем на 15%. Хотя, 
безусловно, наибольшую эффективность метод 
проявляет при расчете объектов с большой сте­
пенью симметричности, для объектов с низкой 
степенью симметричности метод группирования 
не увеличивает продолжительность машинного 
счета по сравнению с традиционным подходом.

Разработанный метод может быть особенно эф­
фективно использован при расчетах деталей, про­
ходящих термическую обработку в печи в течение 
длительных времен. Он может быть также исполь­
зован и для оценки температурных изменений и 
их влияний на структуру для процессов вторич­
ного старения (или дисперсионного твердения) 
алюминиевых сплавов.
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