

One of topical problems of mathematical modeling of thermal processes – numerical solution of thermal conduction equation is examined in the article. There is analyzed the time and spatial step for temperature fields with a complex spatial pattern, containing a lot of elements.

А. Н. ЧИЧКО, А. С. БОРОЗДИН, Белорусский национальный технический университет

УДК 621.74:519

О ПРОБЛЕМАХ СХОДИМОСТИ РЕШЕНИЙ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ ДЛЯ 3D ПРОСТРАНСТВЕННОГО ОБЪЕКТА

Известно, что численные методы решения тепловых задач в значительной степени зависят от пространственного и временного шага. Увеличение дискретности по времени приводит к расходимости численной схемы, хотя уменьшает реальное время счета объекта. В то же время уменьшение временного шага, особенно при увеличении числа элементов в сложном пространственном объекте, приводит к существенному увеличению времени счета. Поэтому проблема поиска методов, уменьшающих время счета, является одной из актуальных проблем, которая входит в число основных при моделирования сложных пространственных объектов.

В данной статье показаны проблемы, возникающие при расчете процесса охлаждения пространственного объекта для различных комбинаций временного и пространственного шага.

Цель настоящей работы — численное моделирование температуры объекта с 3D пространственной структурой в условиях изменяющихся шагов в пространстве и времени.

В качестве математической модели использовалось трехмерное уравнение теплопроводности Фурье [1, 2]

$$cc \frac{\partial T}{\partial \tau} = \frac{\partial}{\partial x} \left(\pi(T) \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\pi(T) \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\pi(T) \frac{\partial T}{\partial z} \right), \tag{1}$$

где c – теплопроводность; ρ – плотность; $\lambda(T)$ – теплоемкость; T(x, y, z, t) – температура; x, y, z – координаты рассчитываемой области объекта и среды.

Применяя простой одношаговый явный конечно-разностный метод к уравнению (1), имеющий первый порядок точности, получаем основную формулу для расчета температуры [3]:

$$T_{x,y,z}^{n+1} = T_{x,y,z}^{n} + \Delta \Phi \frac{\pi}{cc} \left(\frac{T_{x+\Delta x,y,z}^{n} - 2T_{x,y,z}^{n} + T_{x-\Delta x,y,z}^{n}}{\Delta x^{2}} + \frac{T_{x,y+\Delta y,z}^{n} - 2T_{x,y,z}^{n} + T_{x,y-\Delta y,z}^{n}}{\Delta y^{2}} + \pi \frac{T_{x,y,z+\Delta z}^{n} - 2T_{x,y,z}^{n} + T_{x,y,z-\Delta z}^{n}}{\Delta z^{2}} \right),$$
(2)

 $T(\Omega_1) = 20$ °C, $\Omega_1(x, y, z)$ — пространство точек среды, $T(\Omega_2) = 800$ °C, $\Omega_2(x, y, z)$ — пространство точек модели.

Численная реализация уравнения (2), основанная на методе конечных разностей, выполнена в виде программы для ПЭВМ. Программа позволяет проводить моделирование процессов теплообмена сложных пространственных объектов. Программное обеспечение написано на универсальном языке программирования высокого уровня – Object Pascal в визуальной среде быстрой разработки приложений Delphi 5.0 для 32-разрядных операционных систем семейства Windows.

Программа реализована на основе трехуровневой архитектуры разработки приложений. Такая архитектура программ подразумевает логическое разделение программы на три последовательно связанные и взаимодействующие части.

1. Объекты, отвечающие за хранение данных или обеспечивающие прямой доступ к данным (например, если они находятся в файле на диске, в базе данных и т.д.). Объекты данных являются основополагающими в архитектуре программы. Именно от них зависят многие важнейшие функциональные характеристики программы (скорость вычисления, объем оперативной памяти, необходимый для хранения рассчитываемой структуры, ход итеративного процесса и т.д.).

2. Пользовательский интерфейс, посредством которого пользователь управляет работой программы

Рис. 1. Макет объекта и положение точек в пространстве

и контролирует полученные результаты. Сюда относятся вид моделируемого объекта в разрезах различными плоскостями сечений, всевозможные диаграммы, графики окна ввода данных.

3. Объекты среднего уровня, посредством которых объекты пользовательского интерфейса взаимодействуют с объектами данных.

Благодаря такой архитектуре приложений повышаются возможности повторного использования кода (в основном это касается объектов данных и пользовательского интерфейса). Изменения объектов данных, направленные на оптимизацию вычислений и хранения структур, не потребуют никаких изменений в интерфейсе пользователя.

В качестве объекта моделирования была выбрана сложная крестообразная пространственная фигура, изготовленная из алюминия со следующими теплофизическими характеристиками: теплоемкость $\lambda = 40 \text{ Br}/(\text{м K})$, теплопроводность c = 838 Дж/(кг K), плотность $\rho = 2380 \text{ кг/м}^3$. Трехмерное изображение детали с его плоскостным сечением представлено на рис. 1.

Моделирование процесса охлаждения детали проводили в двух средах: в воздухе (λ =0,034 Вт/(м K), *c*=1009 Дж/(кг K), ρ =1,29 кг/м³) и в стальной форме (λ =40 Вт/(м K), *c*=524 Дж/(кг K), ρ =7600 кг/м³). Начальная температура детали принималась *t*_n=800°С, температура среды *t*₁=20°С.

Процесс теплообмена исследовали при следующих пространственных шагах: 0,1, 0,2 и 0,3 мм. При изменении пространственного шага для сохранения геометрических размеров модели соответственном меняли количество клеток, из которых формируется модель. Так, при самом крупном пространственном шаге $\Delta x = \Delta y = \Delta z = 0,3$ мм клеточный автомат содержал 7000 клеток (2376 – объект, 4624 – среда). При наименьшем шаге $\Delta x = \Delta y = \Delta z = 0,1$ мм клеточный автомат содержал 189 000 клеток (64 152 – объект, 124 848 – среда). Временной шаг варьировался в диапазонах от 0,07 до 1,3 с для стальной среды и от 0,1 до 1,5 с для воздушной. Диапазоны изменения временных шагов подбирали экспериментально таким образом, чтобы можно было зарегистрировать появление генерации температуры для данного пространственного шага и заданного времени моделирования. Значения температуры фиксировали в двух точках, расположенных в теле креста и в одной точке в рассчитываемой части среды (плоскостное сечение объекта на рис. 1). Компьютерное моделирование проводили для первых 20 с процесса охлаждения.

Как уже отмечалось выше, машинное время расчета модели напрямую зависит от пространственного шага, т.е. от количества элементов, из которых состоит модель, и от временного шага, т.е. числа тактов расчета, которые необходимо выполнить для моделирования заданного временного интервала. В табл. 1 приведена динамика роста времени, затраченного для проведения трех компьютерных расчетов детали на компьютере класса Pentium-III-650, 128 МБ ОЗУ для указанного пространственного шага и заданных временных шагов.

Таблица 1. Компьютерное время, затраченное для расчета детали типа "крест" для различных пространственно-временных уровней дискретизации

6		$\Delta \varphi_l$	Δ φ ₂	Δ φ ₃	ф
Среда охлаждения	$\Delta x = \Delta y = \Delta z, MM$	-	c	Δ φ ₃ 0,9 0,35 0,08 1,3 0,45 0,11	
	0,3	0,5	0,7	0,9	6
Воздух	0,2	0,2	0,28	0,35	75
	0,1	0,05	0,06	0,08	2400
	0,3	1,0	1,15	1,3	4
Сталь	0,2	0,3	0,35	Δ φ ₃ 0,9 0,35 0,08 1,3 0,45 0,11	55
	0,1	0,07	0,09		1800

Рис. 2. Зависимость функции $T = f(x, y, z, \tau)$ для выбранных точек: a-A; b-B; e-C при изменении временного шага ($\Delta x = \Delta y = \Delta z = 0,3$ мм). Среда охлаждения – воздух

Рис. 3. Зависимость функции $T = f(x, y, z, \tau)$ для выбранных точек: a-A; b-B; e-C при изменении временного шага ($\Delta x = \Delta y = \Delta z = 0,3$ мм). Среда охлаждения – сталь

Ниже представлены результаты проведенного численного моделирования. На рис. 2 и 3 даны результаты математического моделирования процесса охлаждения модели типа "крест" соответственно в воздушной и стальной средах для пространственного шага 0,3 мм. В процессе теплового расчета были определены временные интервалы и критические диапазоны температур для заданных шагов по пространству и времени в фиксированных точках. Итоговые данные численного моделирования приведены в табл. 2 и 3 соответственно для воздушной и стальной сред охлаждения.

Анализируя представленные зависимости можно сделать следующие выводы.

1. Наиболее сильно расходимость разностной схемы теплового уравнения Фурье проявляется в тех точках, которые подвергаются наиболее сильному теплообмену. Следовательно, выбирая шаг расчета, необходимо ориентироваться именно на них.

2. Изменения пространственного шага в 3 раза (с 0,3 до 0,1 мм) для сходимости разностной схемы потребовали уменьшения временного шага более чем в 10 раз.

3. Как видно из рис. 2, 3, расходимость разностной схемы проявляется не сразу, а через определенный временной промежуток. Таким образом, для определенных процессов, где время расчета не превышает критического (когда начинаются температурные колебания), можно использовать достаточно большие уровни дискретизации. Из табл. 4 и 5 следует, что "генерация" температуры проявляется при увеличении временного шага для различных значений пространственного. Причем это зависит от положения анализируемой точки в пространственном объекте.

	Δφ= 0,5				$\Delta \phi = 0,7$			$\Delta \Phi = 0,9$			
ф,	T(A)	T(B)	<i>T(C)</i>	ф	<i>T(A)</i>	<i>T(B)</i>	<i>T(C)</i>	ф,	T(A)	<i>T(B)</i>	<i>T(C)</i>
c		°C		c		• <u>•</u>	°C		°C		
0,5	246,386	713,092	800	0,7	336,941	678,328	800	0,9	427,495	643,565	800
1,0	378,028	658,162	800	1,4	468,182	619,335	800	1,8	528,018	590,742	800
1,5	464,049	620,862	800	2,1	548,52	583,645	800	2,7	608,06	557,842	800
2,0	523,58	593,927	799,519	2,8	597,53	559,104	798,153	3,6	639,256	535,565	794,952
2,5	567,246	573,291	798,365	3,5	635,124	539,862	794,9	4,5	684,386	515,506	789,293
3,0	600,263	556,728	796,485	4,2	658,662	524,542	790,208	5,4	677,979	502,875	780,302
3,5	625,691	543,025	793,87	4,9	677,044	512,286	784,076	6,3	716,532	492,279	769,386
4,0	645,45	531,502	790,522	5,6	688,412	502,667	776,542	7,2	687,534	486,406	756,171
4,5	660,853	521,767	786,442	6,3	696,954	495,642	767,526	8,1	730,338	485,407	739,697
5,0	672,841	513,584	781,628	7	701,753	490,702	757,072	9	681,825	481,66	722,371
5,5	682,111	506,794	776,079	7,7	704,857	487,945	745,172	9,9	736,823	492,394	700,853
6,0	689,193	501,276	769,794	8,4	705,807	486,794	731,915	10,8	665,317	482,475	680,41
6,5	694,496	496,931	762,778	9,1	705,626	487,338	717,375	11,7	741,188	511,682	654,88
7,0	698,338	493,666	755,043	9,8	704,064	489,013	701,689	12,6	638,085	480,805	633,043
7,5	700,964	491,392	746,606	10,5	701,624	491,866	684,988	13,5	746,58	544,546	604,576
8,0	702,569	490,022	737,494	11,2	698,155	495,405	667,442	14,4	597,826	465,972	583,57
8,5	703,303	489,467	727,737	11,9	693,894	499,639	649,213	15,3	756,022	597,514	552,705
9,0	703,282	489,639	717,377	12,6	688,744	504,169	630,478	16,2	540,901	422,438	535,152
9,5	702,598	490,452	706,457	13,3	682,81	508,983	611,402	17,1	773,382	685,745	501,363
10,0	701,319	491,82	695,027	14	676,035	513,779	592,151	18	463,157	325,482	490,436
10,5	699,495	493,662	683,142	14,7	668,465	518,533	572,874	18,9	803,259	838,379	451,66
11,0	697,167	495,897	670,856	15,4	660,079	523,027	553,709	19,8	361,312	133,856	451,496
11,5	694,361	498,451	658,228	16,1	650,905	527,238	534,776	-	-	-	-
12,0	691,099	501,251	645,316	16,8	640,953	531,014	516,181	-	-	-	-
12,5	687,394	504,23	632,178	17,5	630,258	534,335	498,011	-	-	-	-
13,0	683,257	507,327	618,872	18,2	618,855	537,099	480,338	-	-	-	-
13,5	678,696	510,484	605,452	18,9	606,79	539,293	463,216	-	-	-	-
14,0	673,718	513,647	591,972	19,6	594,122	540,851	446,689	-	•	-	-
14,5	668,328	516,77	578,481	20,3	580,908	541,764	430,782	-	-	-	
15,0	662,532	519,809	565,026	-	-	-	-	-	-	-	-
15,5	656,337	522,724	551,65	-	-	_	-	-	-		•
16,0	649,752	525,481	538,392	-	-	-	-	-	-		-
16,5	642,786	528,048	525,287	-	-	-	-	-	-	-	-
17,0	635,451	530,399	512,367	-	-	-	-	-	-	-	-
17,5	627,761	532,509	499,659	-	-	-		-	-	-	-
18,0	619,73	534,357	487,186	-	-	-	•	-		-	-
18,5	611,376	535,925	474,969	-			-	-	-	-	
19,0	602,718	537,197	463,025	-	-	-	-	-	-	-	-
19,5	593,776	538,161	451,365	-		-	-	-	-	-	-
20,0	584,573	538,806	440,001	-	-	-	-	-	-	-	-

Таблица 2. Расчетные значения функций $T = f(x, y, z, \tau)$ для различных пространственных точек ($\Delta x = \Delta y = \Delta z = 0,3$ мм). Среда охлаждения — воздух

.

6/AUTOC M METRAAUPTUR

Таблица 3. Расчетные значения функций $T = f(x, y, z, \tau)$ для различных пространственных точек ($\Delta x = \Delta y = \Delta z = 0,3$ мм). Среда охлаждения — сталь

$\Delta \phi = 1,0$						Δ φ= 1,15			Δφ= 1,3			
ф,	T(A)	<i>T(B)</i>	T(C)	ф	T(A)	<i>T(B)</i>	<i>T(C)</i>	ф,	T(A)	<i>T(B)</i>	<i>T(C)</i>	
c		°C			°C			c	°C			
1	194,099	626,183	800	1,15	220,214	600,111	800	1,3	246,329	574,039	800	
2	300,226	549,232	800	2,3	330,534	528,327	800	2,6	357,784	511,78	800	
3	378,435	500,06	800	3,45	411,88	479,574	800	3,9	442,367	461,44	800	
4	436,57	468,037	792,306	4,6	468,83	451,024	786,544	5,2	496,078	438,195	778,026	
5	482,579	442,719	783,394	5,75	514,629	424,883	776,691	6,5	542,909	407,824	771,303	
6	517,439	423,227	769,147	6,9	545,06	407,668	754,154	7,8	564,684	396,878	732,396	
7	545,096	407,704	751,906	8,05	571,269	393,026	732,81	9,1	594,742	379,919	715,186	
8	565,928	395,176	731,842	9,2	586,536	381,888	705,898	10,4	595,976	372,251	673,781	
9	582,083	386,413	706,686	10,3	600,891	377,969	667,809	11,7	619,861	378,549	615,386	
10	593,817	379,298	682,572	11,5	606,747	369,026	651,065	13	604,377	349,095	656,907	
11	602,249	375,968	651,363	12,6	612,987	377,381	583,179	14,3	627,91	418,085	398,401	
12	607,601	373,421	625,344	13,8	612,422	365,698	603,281	15,6	596,725	294,537	843,71	
13	610,329	374,301	590,617	14,9	611,774	388,211	478,095	16,9	619,871	535,065	-189,829	
14	610,764	375,338	564,815	16,1	607,172	367,975	580,268	18,2	583,463	140,648	1698,995	
15	608,843	379,118	529,076	17,2	598,574	406,82	344,941	19,5	579,203	814,814	-1917,33	
16	605,192	382,622	505,154	18,4	594,066	372,189	604,448	-	-	-	-	
17	599,231	388,043	470,409	19,5	572,691	429,571	165,334	-	•	-	-	
18	592,072	392,921	449,383	-	-	-	-	-	-	-	-	
19	582,547	398,886	416,979	-]	-	-	-	-	-	•	-	
20	572,419	404,176	399,255	-	-	-	-	-	-	-	-	

Таблица 4. Диапазоны генерации температуры при различных уровнях дискретности по пространству и времени для точек А, В и С. Среда охлаждения — воздух

$\Delta x = \Delta y = \Delta z,$		Точ	ка А	Точ	ка В	Точ	іка <i>С</i>
ММ	Δφс	$T_2 - T_1$, °C	ф2 - ф	$T_2 - \overline{T_1}, ^{\circ}\mathrm{C}$	ф2 - ф	$T_2 - T_1$, °C	ф2 - ф
0,1	0,05	-	-	-	-	-	-
0,1	0,06	-	-	-	-		-
0,1	0,08	234-202	17,84-17,92	267-314	19,52-19,6	-	-
0,2	0,20	-	-	-	-	-	-
0,2	0,28	-	-	•	-	-	-
0,2	0,35	510-381	18,9-19,25	810-380	15,4-15,75	274-175	26,95-27,3
0,3	0,50	-	-	-	-	-	-
0,3	0,70	-	-	-	-	-	-
0,3	0,90	463-803	18-18,9	423-695	16,2-17,1	-	-

Таблица 5. Диапазоны генерации температуры при различных уровнях дискретности по пространству и времени для точек А, В и С. Среда охлаждения — сталь

$\Delta x = \Delta y = \Delta z$		Точ	ка A	Точ	ка В	Точ	ка С
ММ	Δфс	$T_2 - T_1$, °C	ф2 - ф	$T_2 - T_1, \overline{^{\circ}C}$	ф2 - ф	$T_2 - T_1$, °C	φ ₂ - φ
0,1	0,07	-	-	-	-	-	-
0,1	0,09	-	-	-	-	-	-
0,1	0,11	719-471	9,8-9,9	532-307	6,8-7,1	824-307	5,5-5,6
0,2	0,30	-	-	-	-		-
0,2	0,35	-	-	-	-	-	-
0,2	0,45	429-647	17,95-18	513-400	16,65-17,6	594-242	1,3-1,35
0,3	1,00	-	-	-	-	-	-
0,3	1,15	-	-	-	-	603-478	15,6-16,9
0,3	1,30	619-583	16,9-18,2	418-294	14,3-16,9	656-398	13-14,3

Таким образом, проведенные исследования показывают пути использования математических моделей, основанных на тепловом уравнении Фурье для оценки допустимости различных уровней пространственной и временной дискретизации. На основе описанного процесса моделирования можно выбирать пространственные и временные шаги, а также интервалы их применимости. В то же время из представленного исследования можно сделать вывод о необходимости численных схем, основанных на переменном временном шаге, что и будет рассмотрено нами в дальнейших публикациях.

aute a actana of a

Литература

1. Чичко А. Н., Яцкевич Ю. В. // ИФЖ. 1999. Т.72, №4. С. 797-801.

2. Чичко А. Н., Дроздов Е. А. // Весці НАН Беларусі. Сер. фіз-тэхн. навук. 2000. №2. С. 5-10.

3. Чичко А. Н., Лихоузов С. Г. Моделирование и информационные технологии проектирования. Мн.: ИТК, 2000. С. 91–99.

 $02.01 - 14\Gamma.15$. Моделирование и расчет заполнения литейной формы расплавом. Turbulent fluid flow and heat transfer calculation in mold filling and solidification processes of castings.

An Geying, Sun Xun^{*}, Wang Junqing (National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, China). J. Mater. Sci. and Technol. 2001. 17, № 1, с. 69-70, 1 ил., табл. 1. Библ. 5. Англ.

Предложены математическая модель и алгоритм расчета заполнения литейной формы расплавом (турбулентный поток) и затвердевания отливки. Результаты расчетов и моделирования на ЭВМ сопоставлены с экспериментальными данными.

02.01 – 14Г.16. О предсказании образования трещии в отливках при затвердевании. Method of as-cast crack prediction within solidified layer.

Zheng Xianshu, Jin Junze, Li Zhi (Department of Materials Engineering, Dalian University of Technology, China). Progr. Nat. Sci. 2001. 11, № 2, с. 123-128, 6 ил. Библ. 6 Англ.

На основе численных расчетов процессов затвердевания отливок, термических напряжений и усадки сформулированы критерии для оценки зарождения трещин. Используя полученные зависимости, проведены расчеты для отливки стального колеса диам. 800 Al-сплава (последнее при непрерывном литье с электромагнитной обработкой расплава в кристаллизаторе). Экспериментально подтверждены результаты расчетов.

02.01 - 14Г.20. Разработка и применение специальных высокопрочных чугунов.

Ч. І. Корниенко Э. Н. Металлургия машиностр. 2001, № 1, с. 18-26. Рус.

Отливки из чугуна с шаровидным графитом (ЧШГ), для которых характерно сочетание высоких технологических, физико-механических и эксплуатационных характеристик, широко применяют взамен стальных отливок, поковок, штамповок, отливок из ковкого (КЧ) и серого (СЧ) чутунов, обеспечивая надежность и долговечность в различных режимах эксплуатации. Факторами, обеспечивающими широкое практическое применение отливок из ЧШГ, являются: удовлетворительные литейные свойства, высокое отношение предела текучести к пределу прочности (0,8...0,85), повышенная циклическая вязкость, удовлетворительная свариваемость и обрабатываемость резанием, повышенная износостойкость в сочетание отливок из СЧ снизить массу отливок до 30%, тем самым уменьшить материалоемкость машин, а при замене отливок из КЧ и стали снизить затраты труда и энергии на производство отливок. Кроме того, в сравнении со сталью ЧШГ имеет относительно низкую температуру плавления и, следовательно, меньшие энергозатраты на плавку, лучшую жидкотекучесть, что дает возможность получать детали более сложной формы. По сравнению с КЧ у ЧШГ выше механические свойства, стойкость против окисления и истирания, меньше затраты на термообработку (TO).

Вся экспресс-информация в журнале подготовлена по материалам РЖ " Технология машиностроения". М.: ВИНИТИ, 2002.