

https://doi.org/10.21122/1683-6065-2021-4-112-115 УДК 627.74 Поступила 22.11.2021 Received 22.11.2021

СТРУКТУРНО-ФАЗОВЫЙ СОСТАВ ГАЗОТЕРМИЧЕСКОГО ПОКРЫТИЯ ИЗ Fe-Cr-Ni-Al-ПСЕВДОСПЛАВА, ПОДВЕРГНУТОГО ОТЖИГУ

М. А. БЕЛОЦЕРКОВСКИЙ, Белорусский национальный технический университет, г. Минск, Беларусь, пр. Независимости, 65,

В.А. КУКАРЕКО, Объединенный институт машиностроения НАН Беларуси,

г. Минск, Беларусь, ул. Академическая, 12. Е-mail: v_kukareko@mail.ru

Ю. С. КОРОБОВ, Институт физики металлов им. М. Н. Михеева Уральского отделения РАН,

г. Екатеринбург, Россия

Е.В. АСТРАШАБ, А.Н. ГРИГОРЧИК, Объединенный институт машиностроения НАН Беларуси,

г. Минск, Беларусь, ул.Академическая, 12.

Исследовано структурно-фазовое состояние газотермического покрытия из Fe-Cr-Ni-Al-псевдосплава в исходном состоянии, а также после отжига в интервале температур 550–650 °С в течение 20–60 мин. Установлено, что фазовый состав Fe-Cr-Ni-Al-псевдосплава в исходном состоянии включает в себя преимущественно Al и α -Fe, а его пористость не превышает 3–5 об. %. Отжиг газотермического покрытия из псевдосплава при температурах 550–650 °С в течение 20–60 мин приводит к выделению железо-алюминиевых интерметаллидных соединений Fe₃Al, Al₁₃Fe₄ и Al₅Fe₂, увеличению твердости и пористости.

Ключевые слова. Псевдосплав, отжиг, структурно-фазовое состояние, пористость.

Для цитирования. Белоцерковский, М.А. Структурно-фазовый состав газотермического покрытия из Fe-Cr-Ni-Al-nceвдосплава, подвергнутого отжигу / М.А. Белоцерковский, В.А. Кукареко, Ю.С. Коробов, Е.В. Астрашаб, А.Н. Григорчик//Литьеиметаллургия.2021.№4.С.112–115.https://doi.org/10.21122/1683-6065-2021-4-112-115.

STRUCTURAL-PHASE COMPOSITION OF A GAS-THERMAL COATING OF Fe-Cr-Ni-AI PSEUDO ALLOY SUBJECTED TO ANNEALING

M. A. BELOTSERKOVSKY, Belarusian National Technical University, Minsk, Belarus, 65, Nezavisimosti ave. V.A KUKAREKO, Joint Institute of Mechanical Engineering National Academy of Sciences of Belarus, Minsk, Belarus, 12, Akademicheskaya str. E-mail: v_kukareko@mail.ru

Yu. S. KOROBOV, Institute of Metal Physics named after M. N. Mikheev of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.

E. V. ASTRASHAB, A. N. GRIGORCHIK, Joint Institute of Mechanical Engineering National Academy of Sciences of Belarus, Minsk, Belarus, 12, Akademicheskaya str.

The structural-phase state of the gas-thermal coating made of Fe-Cr-Ni-Al pseudo-alloy in the initial state, as well as after annealing in the temperature range 550–650 °C for 20–60 minutes, has been investigated. It has been established that the phase composition of the Fe-Cr-Ni-Al pseudo-alloy in the initial state includes mainly Al and α -Fe, and its porosity does not exceed 3–5 vol.%. Annealing of a thermal spray coating from a pseudo-alloy at temperatures of 550–650°C for 20–60 minutes leads to the release of iron-aluminum intermetallic compounds Fe₃Al, Al₁₃Fe₄ and Al₅Fe₂, an increase in hardness and porosity.

Keywords. Pseudo alloy, annealing, structural-phase state, porosity.

For citation. Belotserkovsky M.A., Kukareko V.A, Korobov Yu.S., Astrashab E. V., Grigorchik A.N. Structural-phase composition of a gas-thermal coating of Fe-Cr-Ni-Al pseudo alloy subjected to annealing. Foundry production and metallurgy, 2021, no. 4, pp. 112–115. https://doi.org/10.21122/1683-6065-2021-4-112-115.

Покрытия из псевдосплавов, напыленные методом высокоскоростной металлизации, имеют повышенные рабочие характеристики по сравнению с монопокрытиями из одного материала [1, 2]. Кроме того, перспективным направлением является возможность повышения физико-механических свойств псевдосплавов с помощью их отжига. Так, например, при отжиге покрытий из железо-алюминиевых псевдосплавов могут выделяться интерметаллидные соединения Al₅Fe₂, Al₁₃Fe₄, Fe₃Al и FeAl, обладающие высокой твердостью, коррозионной стойкостью, жаростойкостью, стойкостью к абразивному изнашиванию. В свою очередь, влияние химического состава исходных проволочных материалов на структурно-фазовое состояние напыленных газотермических покрытий из псевдосплавов, подвергнутых отжигу, изучены недостаточно. Таким образом, объектом исследования было покрытие из Fe-Cr-Ni-Al-псевдосплава, подвергнутое отжигу в интервале температур 550–650 °C в течение 20–60 мин.

В результате высокоскоростной металлизации покрытия из Fe-Cr-Ni-Al-псевдосплава формируется слоистое покрытие из чередующихся стальных (06Х19Н9Т) и алюминиевых (АД1) частиц, а также оксидных прослоек между ними. Пористость покрытия после напыления не превышает 3-5 об. % (рис. 1, *a*), а его твердость составляет 180 HV 10.

Фазовый состав покрытия из псевдосплава после напыления (рис. 2) включает в себя преимущественно Al и α -Fe, а также небольшое количество γ -Fe, интерметаллида Fe₃Al и оксидов Fe₃O₄ и Al₂O₃. Присутствие в стальных частицах 06X19H9T покрытия преимущественно α -Fe свидетельствует о том, что в процессе напыления (расплавление, полет частиц, кристаллизация, охлаждение) и плотного контакта между частицами алюминия и стали проходит насыщение стальных частиц алюминием. При этом за счет сильного ферритизирующего действия алюминия сужается γ -область стали 06X19H9T [3].

Рис. 1. Характерная микроструктура напыленного покрытия из Fe-Cr-Ni-Al-псевдосплава

Рис. 2. Фрагмент рентгеновской дифрактограммы (CoK_a) от поверхностных слоев газотермического покрытия из Fe-Cr-Ni-Al-псевдосплава

Отжиг покрытия из псевдосплава при температурах 550–650 °C в течение 20–60 мин приводит к существенным изменениям его структуры и фазового состава, а также повышению твердости покрытия до 240 HV 10, что \approx в 1,3 раза выше по сравнению с исходным состоянием. При этом в результате отжига повышается пористость покрытий до \approx 27 об.% после длительных выдержек (рис. 3, табл. 1), а также снижается количество алюминиевых прослоек.

Рис. 3. Характерные микроструктуры покрытия из Fe-Cr-Ni-Al-псевдосплава после отжига по различным режимам: *a* – отжиг при 550 °C в течение 60 мин; *б* – отжиг при 650 °C в течение 20 мин

Повышение пористости псевдосплава при отжиге (табл. 1) преимущественно обусловлено диффузией атомов алюминия в стальные частицы, в местах их плотного контакта при отсутствии на границах частиц оксидов железа и алюминия, препятствующих диффузионному перемещению атомов. Указанное явление порообразования объясняется реализацией эффектов Френкеля и Киркендалла, заключающееся в том, что при отжиге двух разнородных сваренных материалов происходит диффузия атомов более активного материала (алюминия) по вакансионному механизму в менее активный (железо). При этом вакансии перемещаются в направлении, обратном потоку диффундирующих атомов алюминия. В результате диффузионного переноса происходит смещение границы раздела двух материалов, а также образование диффузионной пористости [4].

τ, мин	T, ℃			
	550	600	650	
20	8-12	15-20	17–23	
40	10–16	15-22	18–23	
60	15-20	18–27	17–26	

Таблица 1. Пористость покрытий из псевдосплава Fe-Cr-Ni-Al, напыленных методом высокоскоростной металлизации после отжига по различным режимам, об.%

Результаты рентгеноструктурного анализа газотермических покрытий из псевдосплава Fe-Cr-Ni-Al, подвергнутых отжигу по различным режимам, представлены в табл. 2. Фазовый состав покрытий после отжига включает в себя α-Fe, различное количество интерметаллидных соединений, а также незначительное количество γ-Fe и оксидов Fe₃O₄ и Al₂O₃.

Таблица 2. Фазовый состав и твердость газотермических покрытий из Fe-Cr-Ni-Al-псевдосплава после отжига по различным режимам

Наименование образца		разца	Фазовый состав	Твердость HV 10
	Исходное состояние		Al; α -Fe; γ -Fe; Fe ₃ Al; Fe ₃ O ₄ ; Al ₂ O ₃	180
пр Fe-Cr- Ni-Al пр пр		20 мин	α-Fe; Fe ₃ Al; Al; Al ₁₃ Fe ₄ ; Al ₅ Fe ₂ ; γ-Fe; Fe ₃ O ₄ ; Al ₂ O ₃	205
	01жиг	40 мин	α-Fe; Fe ₃ Al; Al; Al ₁₃ Fe ₄ ; Al ₅ Fe ₂ ; γ-Fe; Fe ₃ O ₄ ; Al ₂ O ₃	220
	при 550 С	60 мин	α-Fe; Fe ₃ Al; Al; Al ₁₃ Fe ₄ ; Al ₅ Fe ₂ ; γ-Fe; Fe ₃ O ₄ ; Al ₂ O ₃	215
	отжиг при 600 °С	20 мин	α -Fe; Fe ₃ Al; Al ₁₃ Fe ₄ ; Al ₅ Fe ₂ ; γ -Fe; Al; Fe ₃ O ₄ ; Al ₂ O ₃	230
		40 мин	α -Fe; Fe ₃ Al; Al ₅ Fe ₂ ; Al ₁₃ Fe ₄ ; γ -Fe; Fe ₃ O ₄ ; Al ₂ O ₃	226
		60 мин	α-Fe; Fe ₃ Al; Al ₅ Fe ₂ ; Al ₁₃ Fe ₄ ; γ-Fe; Fe ₃ O ₄ ; Al ₂ O ₃	230
	отжиг при 650 °С	20 мин	α-Fe; Fe ₃ Al; Al ₁₃ Fe ₄ ; Al ₅ Fe ₂ ; γ-Fe; Fe ₃ O ₄ ; Al ₂ O ₃	225
		40 мин	α -Fe; Fe ₃ Al; Al ₁₃ Fe ₄ ; Al ₅ Fe ₂ ; γ -Fe; Fe ₃ O ₄ ; Al ₂ O ₃	240
		60 мин	α -Fe; Fe ₃ Al; Al ₁₃ Fe ₄ ; Al ₅ Fe ₂ ; γ -Fe; Fe ₃ O ₄ ; Al ₂ O ₃	235

Из таблицы видно, что отжиг покрытий из псевдосплава при температурах 550–650 °С и времени выдержки 20–60 мин приводит к выделению преимущественно интерметаллида Fe_3Al , а также образованию Al_5Fe_2 ; $Al_{13}Fe_4$. Прослойки чистого алюминия исчезают после отжига при 600 °С в течение 40 мин, что связано с взаимной диффузией атомов алюминия и железа в процессе отжига. Необходимо отметить, что железо-алюминиевые интерметаллидные соединения обладают высокой микротвердостью, жаростойкостью и коррозионной стойкостью.

Выводы

Исследовано структурно-фазовое состояние газотермического покрытия из псевдосплава Fe-Cr-Ni-Al в исходном состоянии, а также подвергнутого отжигу в интервале температур 550–650 °C в течение 20–60 мин.

Установлено, что фазовый состав Fe-Cr-Ni-Al-псевдосплава в исходном состоянии включает в себя преимущественно Al и α-Fe и незначительное количество оксидов железа и алюминия, а его пористость не превышает 3–5 об. %. Преимущественное содержание α-Fe в частицах из аустенитной стали свидетельствует о протекании диффузионных процессов между стальными и алюминиевыми частицами в процессе формирования покрытия.

Отжиг газотермического покрытия из Fe-Cr-Ni-Al-псевдосплава при 550–650 °C в течение 20–60 мин приводит к выделению в нем железо-алюминиевых интерметаллидных соединений Fe_3Al , $Al_{13}Fe_4$ и Al_5Fe_2 , а также повышению твердости приблизительно до 1,3 раз и пористости покрытия.

ЛИТЕРАТУРА

1. **Русаков, В.С.** Термически индуцированные фазовые преобразования в слоистой системе Fe-Al / B.C. Русаков, К.К. Кадыржанов, Е. Е. Суслов, Д. А. Плаксин, Т.Э. Туркебаев // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2004. № 12. С. 22–30.

2. Шморгун, В.Г. О взаимодействии компонентов при твердо- и жидкофазном взаимодействии на межслойной границе композита алюминий АД1+Сталь 12Х18Н10Т / В. Г. Шморгун, Д. В. Проничев, В. П. Кулевич, О. В. Слаутин, Н. А. Артемьев// Изв. Волгогр. гос. техн. ун-та. 2019. № 2 (225). С. 14–17.

3. **Новиков, И.И.** Теория термической обработки металлов: учеб. для вузов. 4-е изд., перераб. и доп. М.: Металлургия, 1986. 480 с.

4. Криштал, М.А. Механизм диффузии в железных сплавах / М.А. Криштал. М.: Металлургия, 1972. 400с.

REFERENCES

1. **Rusakov V.S., Kadyrzhanov K.K., Suslov E.E., Plaksin D.A., Turkebaev T. Je.** Termicheski inducirovannye fazovye preobrazovanija v sloistoj sisteme Fe-Al [Thermally induced phase transformations in the layered system Fe-Al]. *Poverhnost'. Rentgenovskie, sinhrotronnye i nejtronnye issledovanija = Surface. X-ray, synchrotron and neutron research,* 2004, no. 12, pp.22–30.

2. Shmorgun V.G., Pronichev D.V., Kulevich V.P., Slautin O.V., Artem'ev N.A. O vzaimodejstvii komponentov pri tverdoi zhidkofaznom vzaimodejstvii na mezhslojnoj granice kompozita aljuminij AD1+Stal' 12H18N10T [On the interaction of components during solid and liquid phase interaction at the interlayer boundary of the aluminum composite AD1 + Steel 12H18N10T]. *Izvestija Volgogradskogo gosudarstvennogo tehnicheskogo universiteta = Bulletin of the Volgograd State Technical University*, 2019, no. 2 (225), pp. 14–17.

3. Novikov, I. I. Teorija termicheskoj obrabotki metallov [Theory of heat treatment of metals]. Moscow, Metallurgija Publ., 1986, 480 p.

4. Krishtal M.A. Mehanizm diffuzii v zheleznyh splavah [Diffusion mechanism in iron alloys]. Moscow, Metallurgija Publ., 1972, 400 p.