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Приведены результаты исследований по влиянию ультразвуковых колебаний на микроструктуру и анизотропию 
свойств стальных образцов, полученных проволочно-дуговой аддитивной наплавкой. Установлено, что ультразвуковые 
колебания подавляют формирование столбчатых зерен и кристаллографической текстуры, вызванной эпитаксиальным 
ростом от подложки. Рентгеноструктурный анализ подтвердил снижение интенсивности рефлекса (110) α-Fe в 1,5–3,0 
раза без ультразвуковых колебаний, тогда как при ультразвуковых колебаниях структура приближается к изотропной. 
Результаты показывают эффективность ультразвуковых колебаний при управлении процессом наплавки WAAM.
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The results of a study examining the effect of ultrasonic vibrations (UT) on the microstructure and anisotropy of steel sam‑
ples produced by wire-arc additive cladding are presented. UT suppresses the formation of columnar grains and crystallograph‑
ic texture caused by epitaxial growth from the substrate. X-ray diffraction analysis confirmed a 1.5–3.0‑fold decrease in the inten‑
sity of the (110) α-Fe reflection without UT, while with UT, the structure approaches isotropic. The results demonstrate the effec‑
tiveness of UT control in the WAAM cladding process.
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Введение
Проволочно-дуговое аддитивное производство (Wire Arc Additive Manufacturing, WAAM) – ​это метод 

направленного энергетического осаждения (Directed Energy Deposition, DED), использующий электри‑
ческую дугу для плавления расходуемой проволоки и послойного формирования заготовки.

Процесс WAAM характеризуется низкими энергозатратами, что связано с возможностью реализации 
технологии на базе стандартного сварочного оборудования [1]. Помимо экономичности, процесс WAAM 
обладает упрощенными технологическими требованиями. В отличие от методов на основе электронного 
луча [2] он не требует вакуумной среды, что исключает длительные простои на вакуумирование и снижает 
риск нежелательного воздействия, например старения, на материал [3]. Хотя для защиты расплава от ат‑
мосферного загрязнения необходим инертный газ (например, аргон), WAAM менее подвержен проблемам 
испарения и выгорания легирующих элементов по сравнению с электронно-лучевой сваркой в вакууме [4].
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Важным технологическим преимуществом WAAM является энергетическая эффективность. Электри‑
ческая дуга обладает более высоким коэффициентом полезного действия тепловложения (до 85–90 %) по 
сравнению с лазерными источниками [5]. Это делает WAAM особенно выгодным с точки зрения энергопо‑
требления при работе с высокоотражающими металлами, обладающими низким коэффициентом поглоще‑
ния лазерного излучения, такими, как алюминий [6], медь и магний [7]. Наконец, по производительности 
WAAM демонстрирует конкурентоспособность: при типичной высоте слоя 1–2 мм и шероховатости по‑
верхности порядка 500 мкм [8] технология обеспечивает скорость осаждения до 10 кг/ч, что сопоставимо 
с показателями лазерных и электронно-лучевых DED-систем при аналогичной материалоемкости.

Ключевой проблемой аддитивного производства металлических материалов является формирование 
столбчатых зерен, что, в свою очередь, приводит к выраженной кристаллографической текстуре [9–12]. 
Это обусловлено эпитаксиальным ростом зерен в  направлении [001] за счет отвода теплоты подлож‑
кой. Столбчатые зерна растут через слои в высоту, достигая в методах DED диаметра в сотни микрон 
и длины в несколько миллиметров. Такая структура ухудшает механические свойства конструкционных 
сплавов (сталей, титановых) и функциональные свойства материалов с памятью формы. Показательно, 
что восстанавливаемая деформация образцов NiTi с памятью формы, произведенных методом WAAM, 
оказывается втрое ниже, чем у сплавов, полученных традиционными технологиями [13].

Для предотвращения образования столбчатой структуры разработаны несколько подходов. Так, про‑
катка после наплавления каждого слоя эффективно разрушает текстуру, но применима лишь к деталям 
простой геометрии [14–16]. Контроль охлаждения, изменяя термические градиенты, способствует из‑
мельчению зерна, однако провоцирует трещинообразование из-за высоких остаточных напряжений [17, 
18]. Ультразвуковая обработка позволяет снижать как внутренние напряжения, так и размер получаемых 
зерен [19, 20] и может быть применима к получению деталей любой формы, однако эта перспективная 
технология не отработана, а влияние параметров ультразвуковой обработки при наплавке не установ‑
лено. Поэтому цель данной работы – ​исследование влияния ультразвуковой обработки при послойной 
электродуговой наплавке на структуру и свойства стальной стенки.

Методика проведения исследования
Для проведения исследования метода WAAM с наложением ультразвуковых колебаний (УЗК) спро‑

ектирована и  создана лабораторная установка, включающая ультразвуковой генератор, акустическую 
систему, инверторный сварочный аппарат с механизмом подачи проволоки, пневмосистему, механизмы 
линейного перемещения (рис. 1, табл. 1).

   
а б

Рис. 1. Блок-схема (а) и вид (б) лабораторной установки послойной наплавки методом WAAM  
с наложением на подложку ультразвуковых колебаний

В качестве расходного электрода использовали омедненную стальную проволоку марки СВ‑08-Г2С 
диаметром 0,8 мм. Наплавку производили на подложку из стали Ст3, закрепленную на волноводе с по‑
мощью болтового соединения (рис. 2).
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Наплавку осуществляли в защитной среде аргона со скоростью наплавки 0,75 м/мин, скоростью пода‑
чи проволоки 6 м/мин, напряжением 4,5 В, давлением подачи газа 1,2 МПа. Между нанесением слоев вы‑
держивали время остывания 2 мин. Ультразвуковое воздействие применяли непосредственно в процессе 
наплавки с использованием ультразвукового генератора частотой 20 кГц и мощностью 1 кВт.

Микроструктуру образцов исследовали методом оптической микроскопии на микроскопе Микро‑200. 
Фазовый состав определяли методом рентгеноструктурного анализа на дифрактометре ДРОН‑2.

Основные результаты
При ультразвуковой наплавке испытаны два режима (№ 1 и 2), отличающиеся распределением ам‑

плитуды УЗК по длине подложки (рис.  3). В  режиме №  1 минимальная амплитуда составила 4 мкм, 
а максимальная – ​6 мкм. В режиме № 2 эти значения составляли 3 и 1 мкм соответственно.

Образцы, наплавленные при повышенной амплитуде УЗК, демонстрировали разбрызгивание метал‑
ла и формирование неровных слоев (рис.  4, а). В образцах, наплавленных при сниженной амплитуде 
УЗК (режим № 2), наблюдали аналогичные дефекты, однако менее выраженные (рис. 4, б). Поэтому для 
формирования стенки высотой ~30 мм выбран режим № 2.

Изготовлены 36‑слойные стенки как с применением ультразвука, так и без него (рис. 5). Видно, что 
образец, наплавленный без ультразвука, имеет одинаковую высоту (рис. 5, а), тогда как в образце, на‑
плавленном под действием ультразвука, высота меняется (рис. 5, б). Это связано с тем, что амплитуда 
УЗК влияет на угол смачивания, что, в свою очередь, влияет на высоту слоя. Поскольку существует рас‑
пределение амплитуды по длине подложки, то это определяет неодинаковую толщину слоев по длине 
образца и ведет к формированию стенки с неодинаковой высотой.

Т а б л и ц а  1.  Перечень основных частей установки

Номер позиции 
на рис. 1 Наименование

1 Ультразвуковой генератор
2 Магнитострикционный преобразователь
3 Волновод-излучатель
4 Подложка
5 Станина
6 Пневмоцилиндр
7 Шток пневмоцилиндра
8 Механизм линейного перемещения горелки
9 Наплавленный металл
10 Горелка
11 Подающее устройство
12 Источник питания
13 Механизм линейного перемещения акустической системы
14 Клемма заземления
15 Кабель управления
16 Баллон с газом
17 Редуктор
18 Газовый шланг

Рис. 2. Вид крепления к волноводу подложки, на которой наплавлена стенка по технологии послойной наплавки
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Результаты металлографического анализа показали, что в верхних слоях наплавки без УЗК четко вы‑
ражена крупнокристаллическая столбчатая структура (рис. 6, а). В нижних слоях всех стенок наблюда‑
лись мелкие разноосные зерна, образование которых обусловлено α→γ→α-превращениями, происходя‑
щими при многократных термических циклах в процессе наплавки слоев (рис. 6, б).

В случае наплавки с УЗК (режим № 2) в верхних слоях также присутствовала столбчатая структура, 
однако размер зерна был существенно мельче, чем в образцах без УЗК (рис. 7, а). В нижних слоях образ‑
цов с УЗК, как и без УЗК, наблюдались мелкие разноосные зерна (рис. 7, б).

Таким образом, применение УЗК при наплавке (режим № 2) приводит к измельчению зерна в верх‑
них слоях наплавленного металла, хотя столбчатые зерна сохраняются. Формирование мелких разноос‑
ных зерен в нижних слоях является общим для всех исследованных режимов наплавки и объясняется 
α→γ→α-превращениями при повторяющихся термических циклах.

Рис. 3. Распределение амплитуд ультразвуковых колебаний по длине подложки

а     б
Рис. 4. Вид стенки, наплавленной при режиме: а – ​№ 1; б – ​№ 2

а     б  
Рис. 5. Вид образцов, полученных по технологии послойной наплавки:  

а – ​без наложения ультразвука; б – ​с наложением ультразвука в процессе наплавки каждого слоя
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Рентгеноструктурный анализ (РСА) выявил, что α-Fe-фаза является доминирующей во всех исследо‑
ванных наплавленных стенках. В верхних слоях образцов фиксируется увеличение интенсивности реф‑
лекса (110) α-Fe по сравнению с отожженным эталонным образцом из стали Ст3 (рис. 8, в), что является 
следствием формирования выраженной кристаллографической текстуры, характерной для крупных столб‑
чатых зерен с преимущественной ориентацией кристаллических решеток (100) вдоль направления роста.

а     б
Рис. 6. Микроструктура верхних (а) и нижних (б) слоев образца, полученного без применения ультразвука

а     б
Рис. 7. Микроструктура верхних (а) и нижних (б) слоев образца, полученного при наплавке с УЗК

а



ЛИТЬЕ И МЕТАЛЛУРГИЯ   4’2025   61

б

в
Рис. 8. Дифракционные спектры образцов из нижней (а), средней (б) и верхней (в) частей стенки наплавленных слоев  

с применением ультразвука и без него, а также образца после термообработки

При наложении ультразвуковых колебаний в  процессе наплавки разброс значений интенсивности 
рефлекса (110) между измерениями значительно уменьшается (рис.  8). Более того, средняя интенсив‑
ность этого рефлекса приближается к значениям эталона. Это свидетельствует о формировании более 
мелкозернистой и изотропной кристаллографической структуры.

Полученные данные РСА полностью коррелируют с результатами оптической микроскопии, где чет‑
ко визуализируется уменьшение размера столбчатых зерен и повышение доли равноосных зерен в верх‑
них слоях при ультразвуковой обработке.

Указанные эффекты объясняются интенсификацией процессов фрагментации растущих дендритов 
под действием акустических потоков и кавитационных явлений, генерируемых ультразвуком в расплаве.

Выводы
1. 	 Результаты исследования демонстрируют значимый эффект наложения ультразвуковых ко‑

лебаний в  процессе WAAM-наплавки. Установлено, что УЗК эффективно подавляют рост крупных 
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столбчатых зерен, что подтверждено как микроструктурным анализом, так и данными РСА. Управление 
размером зерна достигается за счет комплекса физических явлений, индуцируемых ультразвуком: ин‑
тенсивного акустического течения, локальной кавитации и вибрационного воздействия на фронт кри‑
сталлизации, способствующих фрагментации дендритов.

2. 	 Полученные результаты открывают перспективы для целенаправленного управления микро‑
структурой и напряженным состоянием деталей, изготавливаемых методом аддитивной наплавки, пря‑
мо в процессе их формирования. Ключевое преимущество данного подхода заключается в минимизации 
или полном исключении необходимости применения энергоемких и дорогостоящих методов последую‑
щей термической или механической постобработки, направленных на достижение аналогичных целей.

Работа выполнена в рамках совместного проекта Санкт-Петербургского научного центра (№ 23-РБ‑09–43) 
и Белорусского республиканского фонда фундаментальных исследований (№ Т24СПбГ‑008).
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