172/ <u>ALATER LA METRAAYPELAR</u>

Investigation of two tests of certified samples of campanil and agglomerate with the help of the analytical system ARL 9900 Workstation is carried out.

П. С. ЧИЖОВ, ООО «ТЕРМО ТЕХНО»

АНАЛИЗ ФАЗОВОГО И ЭЛЕМЕНТНОГО СОСТАВА СЫРЬЕВЫХ МАТЕРИАЛОВ И ПОЛУПРОДУКТОВ ПРОЦЕССА ПРОИЗВОДСТВА ЧУГУНА И СТАЛИ С ИСПОЛЬЗОВАНИЕМ АНАЛИТИЧЕСКОЙ СИСТЕМЫ ARL 9900 WORKSTATION

Введение. Технологический контроль всех стадий производства чугуна и стали на металлургических комбинатах включает в себя в качестве обязательной части химический анализ сырья и полупродуктов для каждого передела. Повышение экспрессности и точности такого анализа позволяет достичь максимальной оптимизации технологических параметров процессов, что, в свою очередь, обеспечивает высокую рентабельность производства. Экспрессность анализа повышают за счет применения автоматизированных лабораторных комплексов, связывающих в единую систему устройства пробоподготовки и аналитические приборы, а также высокоскоростных инструментальных методов анализа (например, рентгенофлюоресцентного анализа и порошковой рентгеновской дифракции). Точность анализа удается улучшить с помощью прецизионной стабилизации аналитических условий (пробоподготовка, параметры аналитического прибора) и применения новейших методов обработки результатов. Комплексное использование подобных методов зачастую позволяет быстро и точно определить ранее недоступные для экспрессного исследования характеристики пробы.

Одним из аналитических приборов, обеспечивающих реализацию такого комплексного подхода, является комплекс ARL 9900 Workstation XP3600, предназначенный для химического и фазового анализа образцов. В приборе реализована комбинированная конструкция: «рентгенофлюоресцентный спектрометр с верхним расположением трубки + θ - θ -дифрактометр». В качестве источника излучения для флюоресцентного анализа в данном приборе применяется вертикальная расположенная

над образцом рентгеновская трубка мощностью 3600 Вт с Rh-анодом (возможна поставка источником мощностью 1200, 2500, 3600 или 4200 Вт). Расположение трубки над образцом позволяет предотвратить загрязнение аналитического объема прибора при недостаточной прочности прессованных образцов, а также обеспечить широкую вариативность конструкции. Так, ARL 9900 Workstation может быть укомплектован фиксированными каналами – монохроматорами (до 16 каналов) для одновременного проведения анализа на ряд элементов и гониометром SmartGonio для последовательного анализа.

Дифракционная часть прибора включает в себя расположенный в том же аналитическом пространстве компактный θ-θ-гониометр. В качестве источника излучения для регистрации дифрактограмм в приборе применяется узкофокусная рентгеновская трубка (Со, Си, Мо, Сг, Fe... аноды) мощностью 2200 Вт. За счет расположения дифрактометра в термостабилизированном вакуумном танке достигается высокая воспроизводимость измерений с одновременным сокращением времени съемки без потери точности. Минимизация поглощения излучения за счет проведения анализа в вакууме приводит к высокой интенсивности аналитического сигнала. Возможна регистрация дифрактограмм в диапазоне углов $2\theta = 8-80^{\circ} 2\theta$. В качестве примера, демонстрирующего возможности этого уникального аналитического комплекса, приведем результаты исследования двух проб – аттестованных образцов железной руды и агломератов. При проведении исследования на приборе была установлена трубка с Со-анодом.

AUTEG U METRAAYPFUR / 17

Номер анализа	Содержание оксидов элементов, мас.%								
	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	SO3
1	68,59	27,01	2,6800	0,4620	0,2060	0,2260	0,1320	0,2530	0,0470
2	68,47	27,05	2,7200	0,4590	0,2060	0,2430	0,1320	0,2550	0,0468
3	68,47	27,06	2,6900	0,4660	0,2070	0,2520	0,1360	0,2590	0,0473
4	68,41	27,13	2,7100	0,4590	0,2090	0,2360	0,1340	0,2580	0,0455
5	68,42	27,14	2,6900	0,4570	0,2040	0,2550	0,1350	0,2590	0,0463
6	68,36	27,20	2,7000	0,4570	0,2050	0,2490	0,1300	0,2580	0,0457
7	68,44	27,14	2,6800	0,4580	0,2090	0,2440	0,1350	0,2630	0,0475
8	68,36	27,16	2,7100	0,4660	0,2060	0,2480	0,1340	0,2590	0,0458
9	68,38	27,12	2,7300	0,4580	0,2090	0,2570	0,1310	0,2580	0,0460
10	68,42	27,12	2,6900	0,4610	0,2060	0,2570	0,1300	0,2580	0,0482
Среднее	68,43	27,11	2,7000	0,4603	0,2067	0,2467	0,1329	0,2580	0,0466
C.O.	0,06	0,06	0,0170	0,0034	0,0018	0,0099	0,0022	0,0026	0,0008
0.C.0, %	0,10	0,22	0,63	0,74	0,87	4,01	1,66	1,01	1,72

Таблица 1. Воспроизводимость элементного анализа образца железной руды на ARL 9900 Workstation

Пробоподготовку образцов для исследования на ARL 9900 Workstation осуществляли следующим образом: образец измельчали в вибромельнице (WC гарнитура) в течение 40 с, полученный порошок запрессовывали на подложку из борной кислоты на прессе Herzog HTP 40 (усилие прессования 25)

Результаты. Воспроизводимость элементного анализа образцов, определенная по результатам бесстандартного рентгенофлюоресцентного анализа в программе OptiQuant сравнением экспериментальной относительной погрешности в измерении аналитического сигнала с паспортным содержанием компонента для образца железной руды, приведена в табл. 1.

Таким образом, даже при проведении бесстандартного рентгенофлюоресцентного анализа (время счета не превышает 10 с, для основных элементов – 4 с) относительные стандартные отклонения для основных компонентов (Fe₂O₃, SiO₂) не превышают 0,25% (абсолютные CO < 0,1 мас.%).

Таблица 2. Результаты количественного фазового анализа образца железной руды

Фаза	Содержание, мас.%
Гематит Fe ₂ O ₃	73,1(3)
α-Кварц SiO ₂	26,9(1)

Качественный фазовый анализ образца железной руды показал наличие в пробе двух кристаллических фаз – гематита (Fe₂O₃) и α -кварца (SiO₂). Результаты количественного фазового анализа (см. рисунок *a*, табл. 2) соответствуют результатам химического анализа.

Исследование образца агломерата показало возможность определения соотношения компонент FeO/Fe₂O₃ по данным рентгеновской дифракции (для этого необходимо точное определение фазового состава – содержания в образце FeO, Fe₂O₃, Fe₃O₄). В табл. 3 приведены данные о фазовом составе образца (метод бесстандартного рентгенофазового анализа), аттестованном и найден-

Теоретические, экспериментальные и разностные дифрактограммы образцов железной руды (а) и агломератов (б)

Таблица 3. Расчет содержания FeO и Fe_{общ} по данным бесстандартного рентгенофазового анализа образца агломератов (см. рисунок б)

Компонент	Fe _{общ}	FeO
Метод Ритвельда (без нормировки)	57,5(2)	13,71(11)
Паспорт	58,30	13,10

ном значении содержания $Fe_{o \delta u}$ и FeO, на рисунке δ – результаты уточнения.

Таким образом, аналитический комплекс ARL 9900 Workstation XP3600 позволяет решить задачи по анализу фазового и элементного состава в одном приборе, обеспечивая высокую скорость, отличную воспроизводимость и простоту анализа.