

УДК 621.745 *Поступила 09.02.2016*

ДВИЖЕНИЕ ДИСПЕРСНЫХ МАТЕРИАЛОВ В РОТАЦИОННЫХ НАКЛОНЯЮЩИХСЯ ПЕЧАХ

THE MOVEMENT OF DISPERSED MATERIALS IN TILTING ROTARY FURNACES

С. Л. РОВИН, УП «Технолит», г. Минск, Беларусь, ул. Я. Коласа, 24. E-mail: technolit@tut.by

S. L. ROVIN, Technolit Co, Minsk, Belarus, 24, Kolasa str. E-mail: technolit@tut.by

В статье представлены результаты исследования движения дисперсных материалов в ротационных печах, предложена схема, описывающая сложное винтовое возвратно-поступательное движение материалов в ротационных наклоняющихся печах, предназначенных для рециклинга дисперсных металлосодержащих отходов.

The article presents the results of a study of the movement of dispersed materials in tilting rotary furnaces. The proposed scheme describes a complex helical reciprocating movement of materials in rotary tilting furnaces that are designed for recycling of dispersible metal-containing wastes.

Ключевые слова. Ротационные печи, движение дисперсных материалов, имитационная модель.

Keywords. Rotary furnaces, the movement of dispersed material, simulation model.

Введение. В топливных нагревательных и плавильных печах эффективность тепломассообменных процессов во многом определяется интенсивностью и характером движения теплоносителя (газового потока) и обрабатываемого материала. Чем выше скорость газового потока, чем глубже он проникает в слой материала, тем быстрее нагревается материал и активнее протекают массообменные процессы.

Увеличение скорости массообменных процессов в продуваемом динамическом слое отмечается многими исследователями и подтверждается практикой. В работе [1] приведены данные о значительном ускорении процессов нагрева и интенсификации массообмена в продуваемом слое стружки. В 8–10 раз сокращается время металлизации при продувке монослоя окатышей диаметром < 10 мм [2].

Наибольшая интенсивность этих процессов обеспечивается при продувке слоя материала газовым потоком: в шахтных печах, во вращающихся печах, печах с псевдоожиженным слоем и в пневмопотоке. Печи с псевдоожиженным слоем и восходящим потоком используются, как правило, для обработки монодисперсных материалов. Переработка дисперсных материалов в шахтных печах представляет значительные сложности из-за высокой плотности и соответственно большого гидравлического сопротивления слоя дисперсных материалов. Увеличение давления продувки слоя приводит к нарушению газового режима, возникновению «каналов», резкому увеличению выноса частиц из рабочего пространства печи.

Наиболее эффективным агрегатом для термообработки полидисперсных материалов являются вращающиеся (ротационные) печи. Во вращающихся печах объемный коэффициент теплопередачи (a_v) достигает 3000 Вт/м³, в то время как в неподвижном слое материала в кольцевых печах, печах отражательного типа и других он находится на уровне 3–4 Вт/м³ [3].

Основная часть. Движение материала во вращающихся печах различного типа имеет много общего. Это движение определяется силами межчастичных связей (когезии), внутреннего трения в слое, силами трения и адгезии на границе «материал-футеровка», силами инерции (центробежными силами) и силой тяжести. Кроме того, на верхний слой частиц, особенно при обрушении, действуют аэродинамические силы потока газов. Очевидно, что при увеличении скорости вращения корпуса печи интенсивность перемешивания и тепломассообменных процессов в слое увеличивается. Чем больше сцепление материала с поверхностью футеровки, тем выше поднимается материал при повороте печи и тем интенсивнее разрушается (сдвигается и обрушается) слой.

Скорость «вращения» материала в печи примерно в 3–4 раза выше, чем скорость вращения корпуса печи. Это превышение зависит от относительного объема загрузки и соотношения толщины слоя и диаметра печи.

В то же время есть существенные отличия в движении материалов во вращающихся печах проходного типа (непрерывного действия) и печах периодического действия, в короткобарабанных печах с горизонтальной осью вращения и ротационных наклоняющихся печах (РНП), ось вращения которых находится под углом к горизонту. Эти отличия касаются, в первую очередь, осевой составляющей движения материала (отдельных частиц и слоя в целом).

В первом приближении для понимания механики движения дисперсных материалов в ротационных печах может быть использована известная математическая модель, описывающая поведение шаров в шаровой мельнице [4]. Следует отметить однако, что в шаровой модели не учитываются силы межчастичных связей и силы адгезии.

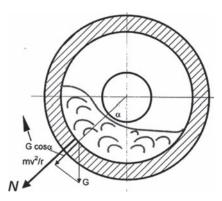


Рис. 1. Схема распределения сил, действующих на частицы материала, находящегося на внутренней поверхности печи

Согласно этой модели, на частички материала (m), расположенные в непосредственной близости от внутренней поверхности корпуса печи, действует радиальная сила N, возникающая от действия центробежной силы и радиального вектора веса (рис. 1):

$$N = \frac{mv^2}{r} \pm mg\cos\alpha \,. \tag{1}$$

Во время вращения барабана сила N вызывает трение между частицами материала и поверхностью барабана с коэффициентом ($K_{\rm Tp}$), который зависит от состояния поверхности барабана и самих частичек. В результате происходит «прилипание» частиц к поверхности барабана ($F_{\rm Tp} = NK_{\rm Tp}$), их подъем и ускорение.

С увеличением угла подъема материала радиальная компонента массы уменьшается и меняет знак после того, как частицы перейдут через горизонтальную ось ($\alpha = 90$ °C, $\cos \alpha = 0$). В зависимости от скорости вращения, раньше или позже, частица теряет контакт с поверхностью барабана, отрывается и скользит (или скатывается) по свободной поверхности слоя. Падающие частицы создают каскад и покрывают верхний слой материала. Таким образом, происходит перемешивание материала в печи и теплообмен в слое.

Предельное состояние, когда силы инерции $F_{\rm u} = mv^2/r$ становятся меньше радиальной составляющей силы тяжести $G\cos\alpha$, соответствующее отрыву материала от поверхности барабана, представлено в виде схемы (рис. 2) [5].

Вторым предельным случаем является ситуация, когда силы инерции (центробежные силы) превышают гравитационные силы:

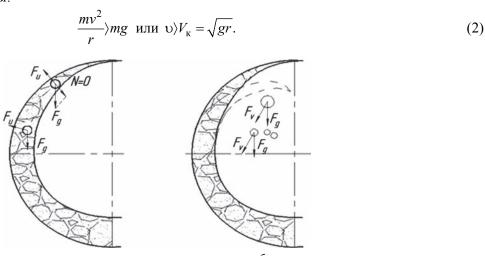


Рис. 2. Схема отрыва частиц от поверхности барабана во вращающейся печи: a – момент критического равновесия; δ – момент отрыва частиц: $F_{\rm u}$, F_g – силы инерции и гравитации; N – равнодействующая инерционных и гравитационных сил; F_V – сила аэродинамического давления газового потока

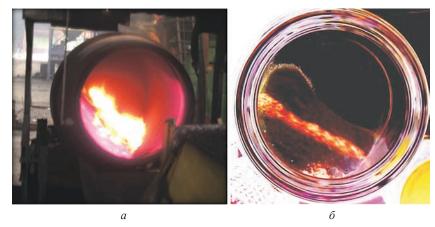


Рис. 3. Положение дисперсного материала при вращении: a – высокотемпературный нагрев стружки в РНП; δ – имитационная модель

Если выразить критическую линейную скорость (V_{κ}) через критическую скорость вращения печи $(n_{\rm K})$: $V_{\rm K} = \omega_{\rm K} r = 2\pi r n_{\rm K}$, то условие (2) можно записать в виде:

$$n\rangle n_{\rm K} = \frac{1}{2\pi} \sqrt{\frac{g}{r}} \,\,, \tag{3}$$

где n — скорость вращения печи, об/с; r — внутренний радиус печи, м.

Когда скорость вращения печи превышает критическое значение $(n)n_{\kappa}$), материал не отрывается от внутренней поверхности печи, даже если находится в верхней точке (α = 180°) и соответственно не перемешивается. Чтобы такая ситуация имела место для печи с радиусом рабочего пространства, равным 1 м, скорость вращения должна быть не менее 30 об/мин. В то же время ротационные нагревательные и плавильные печи имеют скорость вращения, как правило, не более 3-6 об/мин. Поэтому центробежные силы не играют здесь определяющую роль.

На практике подъем материала и его обрушивание (соскальзывание) в большей мере зависят от степени наполнения печи материалом, сил когезии и внутреннего трения в слое, сил адгезии и внешнего трения. Под действием этих сил при вращении печи материал занимает сегмент, соответствующий углу 120–145°. Часть слоя, увлекаемая подложкой (поверхностью футеровки), достигает точки отрыва (угол 90-120° к вертикали) и под действием силы тяжести скатывается (соскальзывает) по поверхности слоя.

В сечении слоя, перпендикулярном оси вращения печи, образуется так называемый «чечевицеобразный» профиль. Эта форма наблюдается как в промышленных печах, так и на имитационных моделях (рис. 3).

В общем случае в поперечном сечении слоя можно выделить две характерные зоны (рис. 4). Первую – циркуляционную зону образует периферия слоя, примыкающая к свободной поверхности слоя и поверхности, соприкасающейся с корпусом печи. Материал в этой зоне движется наиболее активно: захватывается поверхностью печи, поднимается вверх, отрывается в верхней точке от стенки печи, останавливается, обрушивается и скользит по свободной поверхности слоя.

Вторая – центральная зона, образуется внутри слоя. В этой зоне, формирующей ядро слоя, материал движется медленнее, частицы покидают этот слой, увлекаемые материалом, движущимся в циркуляционной зоне. В свою очередь, материал из циркуляционной зоны тоже переходит (выпадает) в центральную зону. Таким образом, происходит перемешивание материала в слое. Решающее влияние на размеры

центральной зоны и перемешивание материала оказывают силы когезии

и внутреннее трение в слое.

В верхней части сечения слоя имеет место характерное утолщение -«вал», образующийся в результате отрыва от поверхности печи и остановки материала. В средней части свободной поверхности образуется характерная выемка – скорость движения частиц в момент обрушивания вала увеличивается, затем по ходу скольжения по поверхности материала уменьшается, а угол наклона свободной поверхности слоя приближается к углу естественного откоса материала. Точка перегиба на линии, образующей свободную поверхность слоя, соответствует моменту перехода от ускоренного движения к замедленному.

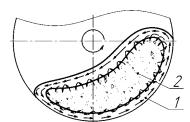


Рис. 4. Схема поперечного сечения слоя материала в ротационной печи: 1 – циркуляционная зона; 2 – центральная зона (ядро)

В нижней части слоя скорость движения материала уменьшается до нуля, а частицы, достигшие поверхности печи, вновь подхватываются и устремляются вверх. Это приводит к образованию в нижней части «вала», аналогичного верхнему сечению слоя.

Нагрев дисперсных материалов сопровождается значительными изменениями состояния их поверхности, адгезионных и когезионных свойств, уменьшением внутреннего трения в слое и внешнего трения по поверхности печи, зачастую меняется (повышается) и дисперсность материала (например, чугунной стружки, окалины и др.). Это приводит к изменению профиля слоя, угол подъема и сектор, занимаемый материалом, уменьшаются, положение и конфигурация слоя приближаются к форме и положению, которое занимает жидкость (расплав) в подобных условиях [1].

Исследования, проведенные на имитационных моделях, подтвердили, что скорость «вращения» материала в ротационных печах значительно выше, чем скорость вращения корпуса печи. Это превышение зависит от относительного объема загрузки или сегмента окружности занимаемого материалом. В РНП, имеющей рабочее положение под углом к горизонту (как правило, в пределах 12–18°), чем ближе материал находится к горловине печи, тем меньший сегмент окружности он занимает и тем быстрее вращается (больше оборотов совершает за 1 оборот печи).

Циркуляция материала в ротационных печах с осью вращения, находящейся под углом к горизонту, в отличие от печей с горизонтальной осью вращения, происходит как в сечении, перпендикулярном оси вращения печи, так и в продольном направлении (рис. 5).

В сечении, перпендикулярном оси вращения, частицы, находящиеся во внешнем слое, перемещаются непрерывно: в зоне, примыкающей к поверхности печи, они двигаются по окружности за счет сил адгезии и внешнего трения, а на свободной поверхности слоя скользят под действием гравитационных сил, преодолевающих силы когезии (межчастичные связи) и внутреннее трение в слое. В продольном направлении (вдоль оси вращения) от горловины печи к ее днищу частицы материала перемещаются пульсационно – в момент обрушивания слоя или скольжения по его поверхности. Таким образом, материал перемещается к днищу печи, где, накапливаясь, образует «придонный вал».

После достижения критического уровня верхний слой от днища сдвигается к горловине, создавая встречное движение материала в осевом направлении.

В результате материал в РНП совершает винтовое возвратно-поступательное движение, обеспечивающее активное перемешивание, как в радиальном, так и в продольном направлении, в отличие от однонаправленного движения в барабанных печах традиционного типа [4].

Скорость движения слоя, примыкающего к поверхности печи (v_n^l), определяется скоростью вращения печи и условиями трения на границе материал – футеровка:

$$v_{\Pi}^{1}=k(\omega r),$$

где k — коэффициент, учитывающий проскальзывание материала по поверхности печи ($k \le 1$); r — внутренний радиус печи.

Скорость движения материала, находящегося на свободной поверхности слоя в момент обрушивания (скольжения), определяется перепадом высот (ΔH) между точкой начала скольжения – границей

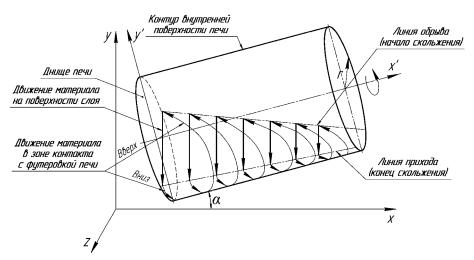


Рис. 5. Траектория движения частиц дисперсного материала в РНП

подъема материала при вращении печи, что, в свою очередь, зависит от адгезии материала, внешнего трения, скорости вращения, толщины слоя, и точкой его завершения, углом наклона поверхности скольжения к горизонту и силами сопротивления скольжению (силами межчастичного взаимодействия – когезии и трения в слое). При этом скорость перемещения частиц в продольном направлении, помимо сказанного, зависит также от угла наклона оси печи к горизонту (α). В общем случае для скорости движения частиц по свободной поверхности в осевом направлении (ν_0^{α}) можно записать:

$$v_0'' = \sqrt{\Delta Ha} \sin \alpha$$
.

Для скорости движения в плоскости, перпендикулярной оси вращения (v_{π}''):

$$v_{\Pi}'' = \sqrt{\Delta H a} \cos \alpha$$
.

Здесь a — ускорение движения частицы по поверхности слоя. В первом приближении можно записать:

$$a = g - \gamma$$
,

где g — ускорение свободного падения; γ — переменная величина, характеризующая сопротивление скольжению материала по свободной поверхности слоя, которая зависит от угла наклона поверхности к горизонту, сил межчастичного сцепления и трения в слое, что, в свою очередь, связано с температурой материала, состоянием поверхности частичек, гранулометрией материала и другими факторами.

Описанный характер движения подтверждается наблюдениями за материалом, помещенным в прозрачную емкость — имитационную модель, соответствующую РНП по соотношению основных геометрических параметров, пространственному расположению и динамическим характеристикам ($Re_{mog} = Re_{phn}$). На рис. 6 с использованием имитационной модели показано перемещение поверхностного прогретого слоя материала в процессе вращения печи — выделены мгновенные положения слоя, соответствующие количеству совершенных оборотов и текущему углу поворота корпуса печи.

Новые данные, полученные в результате исследований, расширяют представления о закономерностях движения дисперсных материалов в ротационных печах с горизонтальной и наклонной осью вращения, позволяют уточнить технические характеристики и конструктивные параметры ротационных наклоняющихся печей.

Рис. 6. Перемещение нагретого слоя в имитационной модели РНП: a — фронтальные снимки положения слоя (l — исходное положение, прогрет верхний слой материала, вращение не началось; 2 — положение прогретого слоя в процессе вращения — 3/4 оборота; 3 — положение слоя через 1,5 оборота; 4—3 оборота; 5—5 оборотов; 6—7 оборотов; 7—9 оборотов; 8 — вращение остановлено через 10 оборотов, прогретый слой равномерно распределился в общем объеме материала); 6 — боковые снимки материала (l — через 1 оборот после начала вращения; 2 — через 3 оборота после начала вращения имитационной емкости)

Выволы

Впервые с помощью имитационной модели выполнено комплексное исследование движения дисперсного материала в РНП с наклонной осью вращения. Установлено, что материал в таких печах совершает сложное винтовое возвратно-поступательное движение, при этом скорость «вращения» слоя более чем в 3 раза превышает скорость вращения самой печи. Такой характер движения материала в РНП и петлеобразное движение газового потока значительно ускоряют происходящие в печи тепломассообменные процессы и повышают термический к. п. д. агрегата до 45–50%.

Полученные закономерности и разработанные технические решения подтвердились на практике и были использованы при модернизации действующих и внедрении новых ротационных печей.

Литература

- 1. Дья конов О. М. Комплексная переработка стружки и металлосодержащих шламов. Минск: Технология, 2012. 262 с.
- 2. К у р у н о в И. Ф., С а в ч у к Н. А. Состояние и перспективы бездоменной металлургии железа. М.: Черметинформация, 2002. 198 с.
 - 3. Ровин С. Л. Рециклинг металлоотходов в ротационных печах. Минск: БНТУ, 2015. 382 с.
- 4. Лисиенко В. Г., Щелоков Я. М., Ладыгичев М. Г. Вращающиеся печи: теплотехника, управление, экология. М.: Теплотехник, 2004. 554 с.
- 5. Ш м и т ц К. Роторно-поворотная барабанная печь: современная технология в производстве вторичного алюминия // Металлургическое производство и технология металлургических процессов. 2006. № 1. С. 30–41.

References

- 1. D j a k o n o v O. M. Kompleksnaja pererabotka struzhki i metallosoderzhashhih shlamov [Complex treatment of metal chips and metallurgical sludge]. Minsk, Technologija Publ., 2012, 262 p.
- 2. K u r u n o v I. F., S a v t u k N. A. *Sostojanie i perspective bezdomennoji metallurgiyi zheleza* [Current state and outlook of direct process metallurgy]. Moscow, Chermetinformacija Publ., 2002, 198 p.
- 3. R o v i n S. L. Recycling metalloothodov v rotacionnih pechah [Recycling of metal wastes in rotary furnaces]. Minsk, BNTU Publ., 2015, 382 p.
- 4. L i s i e n k o V. G., S c h e l o k o v Y a. M., L a d y g i c h e v M. G. *Vraschayuschiesya pechi: teploteknika, upravlenie, ekologiya* [Rotary furnaces: heat engeneering, management, ecology]. Moscow, Teploteknik Publ., 2004, 554 p.
- 5. S h m i t z K. Rotorno-povorotnaja barabannaja pech: sovremennaja tehnologija v proizvodstve vtorichnogo aljuminija. [Tilting rotary furnace: a modern technology in the production of secondary aluminium]. *Metallyrgicheskoe proizwodstwo i Technologiy metallyrgicheskih protsessow* = *Metallyrgical Plant and Technology*, 2006, no. 1, pp. 30–41.