

The main activity directions in developments of NP RUP "Institute BelNIIIit", which solve the complicated problems in the field of foundry and energy-saving are considered.

А. П. МЕЛЬНИКОВ, НП РУП «Институт БелНИИлит»

УДК 621.74

ЭНЕРГО – И РЕСУРСОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ В ЛИТЕЙНОМ ПРОИЗВОДСТВЕ

Снижение расхода энергоносителей в производстве литых заготовок играет важную роль в повышении конкурентоспособности современного литейного производства и стабильного его функционирования. Это обусловлено тем, что цена на энергоносители неуклонно растет и энергоносители в себестоимости отливок уже занимают существенное место.

Литейное производство — энергоемкое производство. Однако практически в каждом технологическом переделе имеются резервы для снижения расхода энергоресурсов. Основные затраты энергоносителей идут на технологические нужды: плавку и доводку металла, сушку стержней и формовочных материалов, термическую обработку отливок, резку, заварку дефектов при исправлении брака литья.

Однако в каждом случае при рассмотрении намечаемых мер по снижению расхода энергоносителей, особенно на технологические нужды, следует учитывать, какое влияние данное мероприятие окажет на технологию и соответственно на качество выпускаемой продукции.

Одно из основных направлений деятельности НП РУП «Институт БелНИИлит», решающего сложные задачи в области литейного производства и энергосбережения, — это изготовление песчаных стержней из холоднотвердеющих смесей (ХТС).

В настоящее время для производства литейных песчаных стержней используется целый ряд технологических процессов, каждый из которых имеет многочисленные разновидности. По совокупности технико-экономических показателей наиболее перспективны «холодные» методы. Существенные преимущества, на наш взгляд, имеет технология «Cold-box-amin». Объемы применения ее в промышленно развитых странах составляют ло 80%.

За последние годы отношение специалистовлитейщиков стран СНГ к «холодным» процессам изменилось — опыт успешной эксплуатации технологии «Cold-box-amin» и широкий выбор на рынке литейного оборудования специальных стержневых машин и вспомогательного оборудования сформировал устойчивую тенденцию к стремительному расширению применения этого процесса.

Технологическая схема процесса определяет весь комплекс оборудования, используемого в изготовлении стержней: смесеприготовительное оборудование, стержневые машины, установки дозирования и подготовки газообразного катализатора, оборудование для обработки стержней и подготовки их к заливке, локализация отработанной амино-воздушной смеси.

Научные исследования НП РУП «Институт БелНИИлит» в области теоретического анализа процессов формирования прочности связующей системы Cold-box-amin и комплексные лабораторные испытания вяжущих систем позволили оптимизировать многие технологические параметры процесса и обеспечить наилучшие условия реализации технологии с применением разработанного институтом оборудования.

НП РУП «Институт БелНИИлит» разработал техническую документацию и организовал производство пяти базовых моделей стержневых машин для изготовления стержней, отверждаемых продувкой газообразными катализаторами.

Принятый пескодувный метод уплотнения смеси обеспечивает достаточно высокое качество стержней и минимальное время заполнения ящика стержневой смесью. Основной параметр машин, объем пескодувного резервуара определяют массу изготавливаемых стержней и габаритные размеры стержневого ящика. От объема резервуара зависят размеры всех элементов пескодувной системы уплотнения: объем ресивера, площади сечения вдувного и выхлопного клапанов.

Основные технические характеристики базовых моделей стержневых машин приведены в табл. 1.

Таблица 1. Основные технические характеристики базовых моделей стержневых машин для Cold-box-amin-процесса

Модель мащины	4749Б1К2	4751B1K2	4752Б2К1	4747У2Б2К1	4760Б2К1			
Способ заполнения стержневого ящика смесью	Пескодувный с отверждением в ящике продувкой газообразным катализатором							
Объем пескодувного резервуара, л	10	15	35	100	200			
Цикловая произ- водительность, съем/ч (в зависи- мости от конфи- гурации стержня)	60–80	60–80	40–50	30–35	20–30			
Разъем стержневого ящика	вертикальный	горизонтальный	горизонтальный	горизонтальный	горизонтальный			
Размеры стержне- вого ящика (стан- дартные, могут быть увеличены), мм	400x320x200	400x320x200	580x580x210	1000x850x365	1600x1180 x 570			
Тип привода	пневматический							
Расход воздуха, м ³ /ч	15	15	22	35	45			
Установленная мощность, кВт	5	5	11	19	19			
Масса машины, кг	3200	4000	9000	17500	22000			
Габариты машины, мм	1850x1590x2660	200x1700x2700	5800x4500x3200	5720x5900x4240	8180x7500x5230			

Стержневые машины оснащены системами локализации отработанной токсичной амино-воздушной смеси; герметизации ящика и продувочной плиты для возможности удаления газообразного катализатора, используемого при продувке смеси в ящике; обеспечения быстрого съема и установки надувной плиты, толкательных плит, а также ящика на машину.

Общие виды машин 4747Б2К1 показаны на рис. 1, 2.

Для приготовления стержневых песчано-смоляных смесей для созданной гаммы стержневых машин институтом разработан ряд смесителей периодического действия. Основные технические характеристики приведены в табл. 2.

Принцип работы смесителей ряда C1C основан на перемешивании компонентов смеси специальным смешивающим элементом с *S*-образной лопастью, получающей вращательное движение от привода мотор-редуктора.

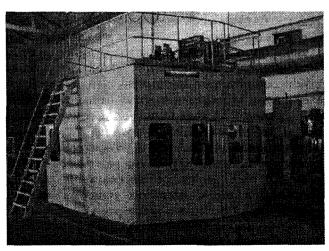


Рис. 1. Стержневая машина мод.4747Б2К1

Все смесители периодического действия (рис. 3) модельного ряда C1С могут поставляться и эксплуатироваться с установками подачи и дозирования сухого песка и жидких составляющих в смеситель.

Как альтернативную версию организации схемы смесеприготовления и подачи приготовленной смеси в бункера машин, НП РУП «Институт БелНИИлит» может предложить вариант использования шнековых смесителей непрерывного действия (рис. 4). В этом случае смеситель устанавливается непосредственно над приемным бункером стержневой машины. Приготовление смеси и загрузка бункера производятся в автоматическом режиме согласно сигналам сигнальных датчиков, расположенных по критическим высотам приемного бункера.

Институтом предлагаются различные модели шнековых смесителей производительностью от 1 до 6 т/ч. Основные технические характеристики смесителей приведены в табл. 3.

Рис. 2. Стержневая машина мод.4747Б2К1 (схема), вид без укрытия

Таблица 2. Смесители периодического действия для приготовления песчано-смоляных смесей

Наименование параметра	C1C-050-01	C1CM-050-02	C1C-150-02		C1C 200	C1C 200
			1	2	C1C-200	C1C-300
Масса замеса, макс., кг	50	80	150	150	200	300
Диаметр чаши, мм	525	630	800	800	884	992
Высота чаши, мм	435	425	500	500	650	465
Модель мотор - редуктора	MPM4-21.024	MPM5-21.024	MPM7-35.024	MPM7-25.024	MPM7-25.029	MPM9-25.224
Число оборотов в минуту	67,1	67,1	41,1	58	58	58,2
Мощность, кВт	4	4	7,4	11	11	15
Ориентировочные габариты, мм	895x700x1020	710x1015x1270	970x1055x1415	970x1055x1415	1060x1765x1265	992x1000x1900
Масса, кг	260	300	570	575	1000	1170

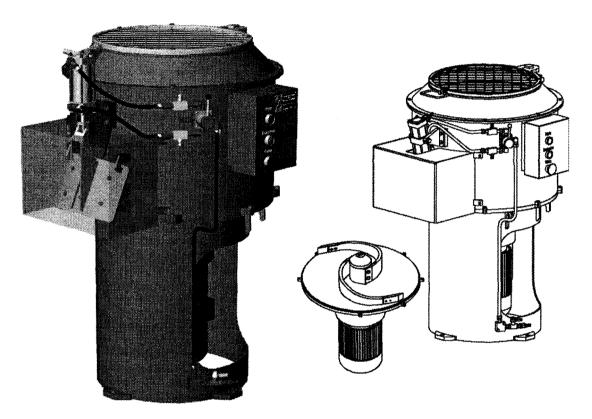


Рис. 3. Смеситель периодического действия мод. C1C-150-02 c S-образным смешивающим элементом

Свои разработки в области производства стержней институт внедряет в производство комплексно с решением вопросов, касающихся всей технологии изготовления стержней.

Пионером в освоении новой ресурсосберегающей технологии изготовления стержней из холоднотвердеющих смесей (Cold-box-amin-процесс) является МТЗ, на котором реализуется программа перехода на холодные технологии изготовления стержней. Здесь с 2000 г. проводится коренная реконструкция стержневого отделения чугунолитейного цеха. Установлено 6 ед. стержневых автоматов конструкции НП РУП «Институт БелНИИлит» для производства крупных стержней ответственных отливок по Cold-box-amin-процессу (блоки цилиндров, корпус муфты сцепления, корпус

маслобака, корпус заднего моста и др.). Завершение плана реконструкции цеха планируется на 2007 г. установкой еще 3 ед. машин такого типа.

Не менее масштабной планируется работа по переоснащению стержневого отделения чугунолитейного цеха №1 этого завода, где в настоящее время эксплуатируется более 20 машин устаревшей конструкции (по "горячим ящикам") — разработка института 30-летней давности.

По данным 2000 г., годовой экономический эффект от освоения технологического комплекса по производству стержней из ХТС с продувкой аминами составил более 1,2 млн. долл. США при общих объемах капитальных затрат на создание комплекса 1,57 млн. долл. США. Экономия при-

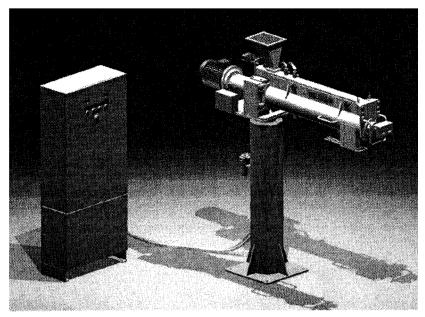


Рис. 4. Высокоскоростной одношнековый смеситель

Таблица 3. Шнековые смесители непрерывного действия для приготовления песчано-смоляных смесей

V	Модель смесителя					
Характеристика	С2Ш-1	С1Ш-3	С1Ш-6			
Тип поворотного смесителя непрерывного действия	Одноплечий двушнеков ый с вихревой головкой	Одноплечий одношнековый высокоскоростной				
Количество рабочих органов (шнеков), шт.	2	1				
Угол поворота, °, не менее	90	180				
Радиус действия, мм	1200	720	1030			
Производительность, т/ч	1,0-2,0	1,0-3,0	3,0-6,0			
Число оборотов шнеков, об/мин	109	690	483			
Количество насосов - дозаторов, шт.	2					
Установленная мощность, кВт	5	4	5			
Давление воздуха, МПа	0,5-0,7					
Габариты (без электрического шкафа и насосных установок)	2295x510x2530	1375x420x1650	2130x500x2025			
Масса смесителя, кг	1100	450	560			

родного газа составила порядка 5 млн. $м^3$ /год, электроэнергии — 1 млн. κ Вт · ч/год. Брак стержней снизился в 38 раз, брак отливок — в 10 раз. Масса отливок снижена в среднем на 0,8%.

В результате окупаемость комплекса составила всего 1,2 года.

На ОАО «Азовмаш» (Украина) в 2004 г. создано и освоено специализированное производство стержней для самых сложных крупногабаритных отливок вагонной группы «рама боковая» и «балка надрессорная».

Следует отметить, что в процессе разработки специалистами института проведено усовершенствование технологии. В частности, ряд стержней объединены из половинок в целые, в результате чего количество стержней для отливки «рама боковая» снижено с 25 до 15 шт.

Институт проводит работы по испытаниям новых технологических процессов и созданию стержневого оборудования для производства стержней по Cold-box-amin-процессу в чугунолитейном цехе Ярославского моторного завода.

Цех специализируется по выпуску отливок блоков цилиндров, двигателей ЯМЗ 236/238 в количестве 75 тыс. шт/год, головок блоков цилиндров двигателей в количестве 815 тыс. шт/год, отливок корпусов коробок переменных передач КПП в количестве 34 тыс. шт/год и др.

В стержневом отделении литейного цеха 80% номенклатуры стержней производится по технологии «горячих ящиков» и 20% стержней — по технологии тепловой сушки в сушилах.

Учитывая особенности действующего производства по основной номенклатуре стержней от-

ливок блоков и головок цилиндров двигателей, было принято решение поэтапного перехода к единой технологии изготовления стержней по Cold-box-amin-процессу без остановки действующего производства.

С 2006 г. институт начал проводить работы по техническому переоснащению стержневых производств сталелитейного цеха № 2 и чугунолитейного цеха Минского автозавода. Для переоснащения в основу положена технология производства стержней по Cold-box-amin-процессу.

В 2007 г. в стержневое отделение чугунолитейного цеха поставлена первая стержневая машина мод. 4747Б2К1 с абсорбционно-биохимической установкой для очистки от остатков амина газовоздушной смеси после отверждения стержневой смеси в ящике. Запуск в производственную эксплуатацию этого комплекса будет произведен в ІІІ кв. 2007 г.

В III кв. 2007 г. будет начата поставка стержневых машин мод. 4751Б1К2 в сталелитейный цех № 2 для освоения производства стержней до 10 кг по Cold-box-amin-процессу взамен технологии «горячих ящиков».

В настоящее время подписаны контракты об освоении технологии производства крупных стержней по Cold-box-amin-процессу на Тутаевском моторостроительном заводе. Предусматривается освоение технологии для производства стержней отливок блоков цилиндров с использованием технологических комплексов на базе стержневых машин мод. 4747Б2К1.

Переход на холодные технологии изготовления стержней взамен технологий их отверждения с применением тепловой энергии обеспечивает экономию на каждой тонне не менее 50 кВт ч электроэнергии и около 250 м³ природного газа. Снижаются брак стержней, отливок, их масса, а также повышается размерная точность.