Preview

MODELING OF THE TEMPERATURE DISTRIBUTION DENSITY FUNCTION IN A DETAIL AT A CONSTANT HEATING TEMPERATURE

https://doi.org/10.21122/1683-6065-2018-2-57-64

Abstract

The functions of the temperature distribution density of the detail on the basis of the results of numerical simulation of the heating process are calculated. Characteristics of the temperature distribution function of the detail for analysis of the level of formation of thermal stresses are proposed. It was shown that the difference between the maximum and minimum temperatures of the detail varies nonlinearly with the time of heating the detail in the furnace. The method for formalizing numerical simulation data for selecting the best thermal modes for heating details is proposed.

About the Authors

A. N. Chichko
Institute of Heat and Mass Transfer of National Academy of Sciences of Belarus
Belarus
Minsk, 15, P. Brovki str.


S. g Likhousov
Belarusian National Technical University
Belarus
Minsk, 65, Nezavisimosti ave.


O. A. Sachek
Belarusian National Technical University
Belarus
Minsk, 65, Nezavisimosti ave.


O. I. Chichko
Belarusian National Technical University
Belarus
Minsk, 65, Nezavisimosti ave.


T. V. Matyushinets
Belarusian National Technical University
Belarus
Minsk, 65, Nezavisimosti ave.


References

1. Chichko A. N., Sachek O. A. Matematicheskoe modelirovanie processa cementacii na osnove uravnenijа teploprovodnosti i diffuzii [Mathematical modeling of the cementation process on the basis of the heat conduction and diffusion equation]. Lit’e i metallurgijа  Foundry production and metallurgy, 2008, no. 2, pp. 88–92.

2. Chichko A. N., Sachek O. A. O tochnosti metodov chislennogo modelirovanijа processov nagreva i ohlazhdenijа ob’’ektov, ispol’zuemyh v zadachah optimizacii rashodovanijа yеnergoresursov [On the accuracy of numerical simulation methods for heating and cooling of objects used in optimization of energy resources consumption]. Izvestijа vysshih uchebnyh zavedenii i yеnergeticheskih ob’edinenii SNG. Yenergetika  Proceedings of the cis Higher Education Institutions and Power Engineering Associations. Energetika, 2008, no. 1, pp. 34–43.

3. Chichko A. N., Borozdin A. V., Sachek O. A. Algoritmy teorii grafov i optimizacijа rezhimov nagreva prostranstvennogo ob’’ekta [Algorithms of graph theory and optimization of heating modes for a three-dimensional object]. Lit’e i metallurgijа Foundry production and metallurgy, 2007, no. 2, pp. 110–114.

4. Chichko A. N., Sachek O. A., Borozdin A. V. Sravnitel’nyi analiz analiticheskogo i chislennogo reshenijа teplovoi zadachi, ispol’zuyushei uravnenie teploprovodnosti [Comparative analysis of the analytical and numerical solution of the thermal problem using the heat equation]. Lit’e i metallurgijа Foundry production and metallurgy, 2007, no. 2, pp. 94–101.

5. Chichko A. N., Borozdin A. S. Trehmernoe modelirovanie naprjаzhennogo sostojаnijа dvizhushegosjа slitka pri izmenenii granichnyh uslovii po temperature [Three-dimensional modeling of the stressed state of a moving ingot with a change in the temperature boundary conditions]. Izvestiya Vuzov. Energetika  Proceedings of the cis Higher Education Institutions. Power engineering, 2005, no. 4, pp. 61–67.

6. Chichko A. N., Andrianov N. V., Borozdin A. S. Komp’yuternajа sistema «ProTerm–1n»dljа modelirovanijа processov stupenchatogo nagreva stal’nyh slitkov [Computer system «ProTerm-1n» – for modeling the processes of stepwise heating of steel ingots]. Stal’  Steel, 2005, no. 11, pp. 66–71.

7. Chichko A. N., Borozdin A. S. Matematicheskajа model’ rascheta naprjаzhenii dvizhushegosjа v pechi slitka [A mathematical model for calculating the stresses of an ingot moving in a furnace]. Izvestiya Vuzov. Chernajа metallurgijа  Proceedings of high schools. Ferrous metallurgy, 2005, no. 8, pp. 47–50.

8. Chichko A. N., Kukuj D. M., Sobolev V. F., Lihouzov S. G., Sachek O. A. Modelirovanie processov nagreva i ohlazhdenijа detalei na osnove trehmernogo uravnenijа teploprovodnosti v CAE «ProTerm-1»[Modeling of heating and cooling of parts on the basis of the three-dimensional heat equation in CAE «ProTerm-1»]. Lit’e i metallurgijа  Foundry production and metallurgy, 2012, no. 1, pp. 65–70.


Review

For citations:


Chichko A.N., Likhousov S.g., Sachek O.A., Chichko O.I., Matyushinets T.V. MODELING OF THE TEMPERATURE DISTRIBUTION DENSITY FUNCTION IN A DETAIL AT A CONSTANT HEATING TEMPERATURE. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2018;(2):57-64. (In Russ.) https://doi.org/10.21122/1683-6065-2018-2-57-64

Views: 526


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)