Preview

Influence of heat cycling conditions in the additive manufacturing of stainless steel and al-si alloy raw parts on their microstructure

https://doi.org/10.21122/1683-6065-2018-4-133-138

Abstract

The microstructure of samples of austenitic stainless steel and Al-Si alloy, obtained by the wire based additive method under various conditions was investigated. The effect of the beam current, the deposition intervals and the electron beam post-processing on the microstructure is shown.

About the Authors

I. L. Pobol
Physical-Engineering Institute of the NAS of Belarus
Belarus


A. A. Bakinovski
Physical-Engineering Institute of the NAS of Belarus
Belarus


M. K. Stepankova
Physical-Engineering Institute of the NAS of Belarus
Belarus


A. N. Burin
Physical-Engineering Institute of the NAS of Belarus
Belarus


A. D. Gubko
Physical-Engineering Institute of the NAS of Belarus
Belarus


References

1. Zlenko M. A., Nagaytsev M. V., Dovbysh V. M. Additivnye tekhnologii v mashinostroenii [Additive technologies in engineering]. Мoscow «NAMI»Publ., 2015. 220 p.

2. Herzog, D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals // Acta Mater. 2016, vol. 117, pp. 371–392.

3. Trevisan F., Calignano F., Lorusso M., Pakkanen J., Aversa A., Ambrosio E.; Lombardi M., Fino P., Manfredi D. On the selective laser melting (SLM) of the alsi10mg alloy: Process, microstructure, and mechanical properties. Materials, 2017, vol. 10(76), pp. 1–23.

4. Sallica-Leva E., Jardini A. L., Fogagnolo J. B. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. J. Mech. Behav. Biomed. Mater. 2013. Vol. 26, pp. 98–108.

5. Taminger K. M. B., Hafley R. A. Characterization of 2219 Aluminum Produced by Electron Beam Freeform Fabrication. Proceedings of the 13th Solid Freeform Fabrication Symposium; Austin, TX; August 4–8, 2002, pp. 482–489.

6. Baufeld В., Van der Biest O., Gault R. Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties. Materials and Design. 2010, vol. 31(1), pp. 106–111.

7. Brenne F., Leuders S., Niendorf T. On the impact of additive manufacturing on microstructural and mechanical properties of stainless steel and Ni-base alloys. BHM Berg-und Hüttenmännische Monatshefte, 2017, vol. 162(5), pp. 199–202.

8. Khimicheskiy sostav materiala provoloki LNM304LSi (Chemical elements content of wire LNM304LSi) // Oficialniy sait kompanii Lincoln Electric (Lincoln Electric official site) Available at: https://www.lincolnelectric.com/assets/global/Products/ ConsumableEU_MIGWires-LNM-LNM304LSi/LNM304LSi-rus.pdf (accessed 1 November 2018).

9. State Standard 1050–88. Quality and high-quality steel. Rolled and shaped steel, calibrated steel. Moscow, Standartinform Publ., 1996. 30 p. (In Russian).

10. Zaleski V. H., Pobol I. L., Bakinovski A. A., Gubko A. D. Poluchenie metalicheskikh izdeliy s primeneniem electronnoluchevykh additivnykh tekhnologiy [The metal parts manufacturing by electron beam additive technologies]. Vesti NAN Belarusi. Ser. phys.-tech. nauk = Proceeding of the National Academy Sciences of Belarus. Physical-Tehnical series. 2018, vol. 63, no. 2. pp. 169–180. https://doi.org/10.29235/1561-8358-2018-63-2-169-180.


Review

For citations:


Pobol I.L., Bakinovski A.A., Stepankova M.K., Burin A.N., Gubko A.D. Influence of heat cycling conditions in the additive manufacturing of stainless steel and al-si alloy raw parts on their microstructure. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2018;(4):133-138. (In Russ.) https://doi.org/10.21122/1683-6065-2018-4-133-138

Views: 744


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)