Preview

Matematical modeling of the process of enlarging the austenitic grain during high-temperature heating of alloy structural steel

https://doi.org/10.21122/1683-6065-2019-3-74-84

Abstract

The influence of the heating rate of a typical case hardening steel 15KHGN2TA and 25KHGT on the growth of austenitic grain during long-term isothermal exposures at the high-temperature chemical-heat treatment was studied. It is shown that the change in the rate of heating case hardening steels in the temperature interval a®g transformations during chemical-thermal treatment has a significant impact on the process of growth of austenitic grains in them.

Regression equations describing the dependence of the average size of austenitic grain on the heating rate, pre-annealing temperature and cementation temperature are obtained, which allow selecting the cementation modes of various steels. A phenomenological model describing the mechanism of formation and growth of austenitic grains in steels under heating at different speeds is developed.

It is concluded that the slow heating of steels in the interval of phase a®g transformation contributes to the formation of a complex of small austenite grains separated by high angle boundaries with adsorbed on them by impurity atoms, which ensures higher resistance grain structure to coalescence and reduce the rate of migration of the boundaries during prolonged hightemperature austenization.

About the Authors

V. A. Kukareko
Joint Institute of Mechanical Engineering of NAS of Belarus
Belarus
Minsk, 12, Akademicheskaya str. 


B. M. Gatsuro
Minsk Tractor Works
Belarus
Minsk, 29, Dolgobrodskaya str.


A. N. Grigorchik
Joint Institute of Mechanical Engineering of NAS of Belarus
Belarus
Minsk, 12, Akademicheskaya str. 


A. N. Chichin
Minsk Tractor Works
Belarus
Minsk, 29, Dolgobrodskaya str.


References

1. Lahtin Ju. M., Arzamasov B. N. Himiko-termicheskaja obrabotka metallov [Chemical-thermal treatment of metals]. Moscow, Metallurgija Publ., 1985, 256 p.

2. Ljahovich L. S., Borisenok G. V., Vasil’ev L. A., Voroshnin L. G. Himiko-termicheskaja obrabotka metallov i splavov [Chemical-thermal treatment of metals and alloys]. Moscow, Metallurgija Publ., 1981, 424 p.

3. Zinchenko V. M. Inzhenerija poverhnosti zubchatyh koles metodami himiko-termicheskoj obrabotki [Gear surface engineering using chemical heat treatment methods]. Moscow, Izdatel’stvo MGTU im. N. Je. Baumana Publ., 2001, 303 p.

4. Val’ko A. L., Rudenko S. P., Chichin A. N. Vlijanie vysokotemperaturnoj cementacii na velichinu zerna konstrukcionnyh stalej [The effect of high-temperature cementation on the grain size of structural steels]. Aktual’nye voprosy mashinovedenija  Actual issues of engineering, 2014, Vyp. 3, pp. 343–346.

5. Kukareko V. A. Zakonomernosti rosta austenitnogo zerna v stali 18HNVA [Patterns of growth of austenitic grain in steel 18HNVA]. Metallovedenie i termicheskaja obrabotka  Metal Science and Heat Treatment, 1981, no. 9, pp. 15–17.

6. Kukareko V. A. Val’ko A. L., Chichin A. N. Vlijanie rezhima nagreva konstrukcionnyh stalej pri vysokotemperaturnoj cementacii na velichinu austenitnogo zerna [The infl of the heating mode of structural steels during high-temperature cementation on the value of austenitic grain]. Aktual’nye voprosy mashinovedenija  Actual issues of engineering, 2017, Vyp. 6, pp. 372–375.

7. Kukareko V. A. Val’ko A. L., Chichin A. N. Vlijanie skorosti nagreva cementiruemyh konstrukcionnyh stalej na rost austenitnogo zerna pri vysokotemperaturnoj vyderzhke [The influence of the heating rate of cemented structural steels on the growth of austenitic grain at high temperature exposure]. Vescі Nacyjanal’naj akadjemіі navuk Belarusі. Seryja fіzіka-tjehnіchnyh navuk  Proceedings of the National academy of sciences of Belarus, Physical-Technical series, 2018, Vol. 63, no. 4, pp. 399–406.

8. Spiridonov A. A. Planirovanie jeksperimenta pri issledovanii tehnologicheskih processov [Planning an experiment in the study of technological processes]. Moscow, Mashinostroenie Publ., 1981, 184 p.

9. Li J. C. M. Possibility of Subgrain Rotation during Recrystallization. J. Appl. Phys, 1962, vol. 33, nо. 10, pр. 2958–2965.

10. Guljaev A. P. Metallovedenie [Metallurgy]. Moscow, Metallurgija Publ., 1986, 647 p.

11. Gorelik S. S. Rekristallizacija metallov i splavov [Recrystallization of metals and alloys]. Moscow, Metallurgija Publ., 1978, 568 p.

12. Grabskij M. V. Struktura granic zeren v metallah [The structure of grain boundaries in metals]. Moscow, Metallurgija Publ., 1972, 160 p.

13. Hu H. In book Recovery and Recrystallization of Metals, Himmel L., ed. Intersci. Publ., New York, 1963, 311 p.

14. Novikov I. I. Teorija termicheskoj obrabotki metallov [Theory of heat treatment of metals]. Moscow, Metallurgija Publ., 1986, 480 p.

15. Bernshtejn M. L., Zajmovskij V. A., Kaputkina L. M. Termomehanicheskaja obrabotka stali [Thermomechanical processing of steel]. Moscow, Metallurgija Publ., 1983, 480 p.

16. Lucke K. Stuwe H. P. In book Recovery and Recrystallization of Metals, Himmel L., ed. Intersci. Publ., New York, 1963, 311 p.

17. Kan R. U., Haazen P. Fizicheskoe materialovedenie [Physical Materials Science]. Moscow, Metallurgija Publ., 1986, 640 p.

18. Li J. C. M. High‐Angle Tilt Boundary – A Dislocation Core Model. J. Appl. Phys. 1961, Vyp. 32, no. 3, pp. 525–534.

19. Glejter G., Chalmers B. Bol’sheuglovye granicy zeren [Big angle grain boundaries]. Moscow, Mir Publ., 1975, 375 p.


Review

For citations:


Kukareko V.A., Gatsuro B.M., Grigorchik A.N., Chichin A.N. Matematical modeling of the process of enlarging the austenitic grain during high-temperature heating of alloy structural steel. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2019;(3):74-84. (In Russ.) https://doi.org/10.21122/1683-6065-2019-3-74-84

Views: 699


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)