Surface morphology, magnetic resonant and antistatic properties of 07S11-KVfabric coated with stainless steel
https://doi.org/10.21122/1683-6065-2020-1-87-92
Abstract
A study of the mixed 07С11-KВ fabric (produced by Mogotex) with a coating of steel 12X18H10T, obtained by the method of pulsed cathode arc deposition in a vacuum of 3.5×10–3 Pa, was conducted. It is shown that optical microscopy has a number of advantages in studying the surface morphology of such objects as compared to scanning electron microscopy. The most contrast image is formed using dark-field illumination. When coating is applied, a droplet phase is formed, the droplet sizes vary from 2 to 10 microns. By the method of electron paramagnetic resonance, it has been established that the spectrum of coated fabric has an asymmetrical spectral line with a width of 101 mT, which indicates a high concentration of magnetic resonance centers and a significant resonant absorption of microwave energy. Resonant absorption at low magnetic fields is determined by clusters of iron, nickel, chromium, titanium, etc., with weak nonresonant absorption. The specific surface resistance of the fabric (side 1 / side 2) is 3.3×105 ohm and 5.6×105 ohm, respectively.
About the Authors
A. G. AnisovichBelarus
Minsk, Belarus, 10, Kuprevicha str.
I. P. Akula
Belarus
Minsk, Belarus, 10, Kuprevicha str.
V. G. Zalesskiy
Belarus
Minsk, Belarus, 10, Kuprevicha str.
M. I. Markevich
Belarus
Minsk, Belarus, 10, Kuprevicha str.
V. F. Stelmakh
Belarus
Minsk, Belarus, 4, Nezavisimosty ave.
N. M. Chekan
Belarus
Minsk, Belarus, 10, Kuprevicha str.
References
1. Gorlov M. I., Emel’janov A. V., Plebanovich V. I. Jelektrostaticheskie zarjady v jelektronike [Electrostatic charges in electronics]. Minsk, Belaruskaja navuka Publ., 2006, 295 p.
2. Bondarchuk M. M. Podhody k klassifikacii tehnicheskogo tekstilja [Approaches to the classification of technical textiles]. Problemy sovremennoj nauki i obrazovanija = Problems of modern science and education, 2015, no. 11 (41), pp. 95–99.
3. Borzunov I. G., Badalov K. I., Goncharov V. G., Duginova T. A., Shilova N. I. Moscow, Legprombytizdat Publ., 1986. 392 p.
4. Kondratenko A. N., Golubkova T. A. Polimernye kompozicionnye materialy v izdelijah zarubezhnoj raketno-kosmicheskoj tehniki (obzor) [Polymer composite materials in products of foreign rocket and space technology (review)]. Konstrukcii iz kompozicionnyh materialov = Composite Materials, 2009, no. 2, pp. 24–34.
5. Grishanova I. A., Migacheva O. S. Sostojanie mirovogo i otechestvennogo rynkov sinteticheskih volokon, nitej, netkanyh materialov i ego perspektivy [State of the world and domestic markets of synthetic fibers, yarns, nonwoven materials and its prospects]. Vestnik tehnologicheskogo universiteta = Bulletin of the University of Technology, 2015, vol. 18, no. 9, pp. 10–15.
6. Adashkevich S. V., Stel’mah V. F., Bakaev A. G., Gordienko A. I. et al. Magnitorezonansnaja diagnostika radiopogloshhajushhih kompozicionnyh materialov [Magnetic resonance diagnostics of radar absorbing composite materials.]. Polimernye materialy i tehnologii = Polymer materials and technologies, 2015, vol. 1, no. 1, pp. 71–75.
7. Adashkevich S. V., Stel’mah V. F., Markevich M. I., Chaplanov A. M. Sposob izmerenija pogloshhenija izluchenija SVCh [The method of measuring the absorption of microwave radiation]. Patent RB, no. U 19325, 2015.
8. Anisovich A. G. Iskusstvo metallografii: ispol’zovanie metodov opticheskogo kontrastirovanija [The art of metallography: the use of optical contrast methods.]. Vesci NAN Belarusi. Ser. fiz.-tehn. navuk = Proceedings of the National Academy of Sciences of Belarus. Phyzical-technical series, 2016, no. 1, pp. 36–42.
Review
For citations:
Anisovich A.G., Akula I.P., Zalesskiy V.G., Markevich M.I., Stelmakh V.F., Chekan N.M. Surface morphology, magnetic resonant and antistatic properties of 07S11-KVfabric coated with stainless steel. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2020;(1):87-92. (In Russ.) https://doi.org/10.21122/1683-6065-2020-1-87-92