High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying
https://doi.org/10.21122/1683-6065-2020-3-99-111
Abstract
High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying. The study is aimed at making high-temperature aluminum composite materials with special physical and mechanical properties. An effective way to solve the problem is to use a technology based on reactive mechanical alloying. The processes of phase composition formation, the structure and properties that occur at all stages of the technology implementation and the effect of alloying components on these processes have been analyzed, and the composition «aluminum (PA4) – surfactant (С17Н35СООН – 0.7 %)» has been found to be the most appropriate. The microcrystalline structure of its base, regardless of the composition of constituent materials, is preserved at subsequent stages of production of materials and determines high values of high-temperature strength, which are significantly higher than those of analogue materials. The microcrystalline structure of the base is characterized by a well-developed surface of grain and subgrain boundaries and is stabilized by nanosized inclusions of aluminum oxides and carbides formed during mechanical alloying. Additional alloying, which provides special properties, does not change the «structural phase» type of the developed materials. They are considered to be dispersion hardened composite microcrystalline materials.
About the Authors
F. G. LovshencoBelarus
Mogilev, Belarus, 43, Mira ave.
I. A. Lozikov
Belarus
Mogilev, Belarus, 43, Mira ave.
A. I. Khabibulin
Belarus
Mogilev, Belarus, 43, Mira ave.
References
1. Lovshenko F. G., Lovshenko G. F. Zakonomernosti formirovanija fazovogo sostava, struktury i svojstv mehanicheski legirovannyh materialov [Patterns of formation of phase composition, structure and properties of mechanically alloyed materials]. Mogilev, Belorussko‑Rossijskij universitet Publ., 2016, 420 p.
2. Aljuminievye splavy. Promyshlennye deformiruemye, spechennye i litejnye alju-minievye splavy [Aluminum alloys. Industrial wrought, sintered and cast aluminum‑alloy alloys]. Moscow, Metallurgija Publ., 1972, 552 p.
3. Dobatkin V. I., Elagin, V. I. Granuliruemye aljuminievye splavy [Granular Aluminum Alloys]. Moscow, Metallurgija Publ., 1982, 176 p.
4. Vitjaz’ P.A., Lovshenko F. G., Lovshenko G. F. Mehanicheski legirovannye splavy na osnove aljuminija i medi [Mechanically alloyed alloys based on aluminum and copper]. Minsk, Belaruskaja navuka Publ., 1998, 352 p.
5. Layyous F. F., Nadiv S. I. J., Lin The correlation between mechanical alloying and microstructure of Al‑Li‑Mg al‑loys. Jnt. Conf. Powder Met., London, 2–6 July, 1990, PM 90, Vol.1, London, 1990, pp. 171–179.
6. Lovshenko F. G., Lovshenko G. F., Hina B. B. Nanostrukturnye mehanicheski legirovannye materialy na osnove metallov [Nanostructured mechanically alloyed materials based on metals]. Mogilev, Belorussko‑Rossijskij universitet Publ., 2008, 679 p.
7. Lovshenko F. G. Poluchenie, sostav, struktura i svojstva mehanicheski legirovannyh kompozicionnyh zharoprochnyh materialov na osnove sistemy «aljuminij‑magnij» [Obtaining, composition, structure and properties of mechanically alloyed composite heat‑resistant materials based on the aluminum‑magnesium system]. Metallurgija mashinostroenija = Metallurgy Engineering, 2018, no. 4, pp. 24–30.
8. Gorelik S. S. Rekristallizacija metallov i splavov [Recrystallization of metals and alloys]. Moscow, Metallurgija Publ., 1978, 568 p.
9. p.
10. Zaharov M. V., Zaharova A. M. Zharoprochnye splavy [Heat Resistant Alloys]. Moscow, Metallurgija Publ, 1972, 384 p.
11. Guljaev A. P. Materialovedenie [Materials Science]. Moscow, Metallurgija Publ, 1986, 544 p.
12. Lovshenko F. G., Lozikov I.A., Lipskij A. Je. Poluchenie, struktura i svojstvа mehanicheski legirovannyh zharoprochnyh aljuminievyh materialov na osnove sistemy «aljuminij – bor» [Obtaining, structure and properties of mechanically alloyed heat‑resistant aluminum materials based on the aluminum‑boron system]. Trudy 27-j Mezhdunarodnoj nauchno-tehnicheskoj konferencii «Litejnoe proizvodstvo i metallurgija 2019. Belarus» = Proceedings of the 27th International Scientific and Technical Conference «Foundry and Metallurgy 2019. Belarus». Minsk, 2019, pp. 102–108.
13. Korh S. K. Poluchenie antifrikcionnyh materialov [Obtaining antifriction materials]. Poroshkovaja metallurgija = Powder Metallurgy, 1986, no. 8, pp. 57–60.
14. Polotaj V. V., Voropaev V. S., Ocheretjanskij V. M., Perepelkin A. V. Tribohimicheskie ispytanija antifrikcionnyh poroshkovyh lentochnyh materialov [Tribochemical testing of antifriction powder tape materials]. Poroshkovaja metallurgija = Powder Metallurgy, 1986, no. 8, pp. 57–60.
15. Bushe N.A., Mudrenko G.A., Dvosinaja V.A. Issledovanie svojstv pressovannyh polos, poluchennyh iz granul aljuminievogo splava s 15 % svinca, 3 % olova i 1 % medi [Investigation of the properties of pressed strips obtained from granules of an aluminum alloy with 15 % lead, 3 % tin and 1 % copper]. Nauchnye trudy CNII MPS = Scientific works of the Central Research Institute of the Ministry of Railways, 1972, vyp. 473, pp. 46–53.
16. Lovshenko G. F., Lovshenko F. G. Dispersno‑uprochnennye antifrikcionnye materialy na osnove sistemy «aljuminij‑svinec» [Dispersion‑strengthened antifriction materials based on the aluminum‑lead system]. Poroshkovaja metallurgija = Powder Metallurgy, 2007, no. 5/6, pp. 44–52.
17. Lovshenko F. G., Lovshenko G. F., Marukovich E. I. Poluchenie, struktura i svojstva zharoprochnyh mehanicheski legirovannyh aljuminievyh materialov s nizkim kojefficientom linejnogo rasshirenija [Obtaining, structure and properties of heat‑resistant mechanically alloyed aluminum materials with a low coefficient of linear expansion]. Zagotovitel’nye proizvodstva v mashinostroenii = Procurement in engineering, 2006, no. 6, pp. 37–42.
Review
For citations:
Lovshenco F.G., Lozikov I.A., Khabibulin A.I. High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2020;(3):99-111. (In Russ.) https://doi.org/10.21122/1683-6065-2020-3-99-111