Influence of cementation duration on the structure and properties of structural middle carbon steel 40Cr4, 35CrMnSi4 and 42CrMoS4
https://doi.org/10.21122/1683-6065-2024-1-69-77
Abstract
The influence of increasing the cementation duration from 8 to 12 hours with subsequent quenching and low‑temperature tempering on the structure formation and contact fatigue of structural medium‑carbon low‑alloy steels 35CrMnSi4, 40Cr4, and 42CrMoS4, which are not traditionally cemented, was investigated. It has been confirmed that in steel 35CrMnSi4, the increased silicon content enhances the microhardness of the surface of thermally diffused‑hardened layers, reduces the amount of carbon and the thickness of the proeutectoid zone, decreases the volumetric fraction of carbide phase and inclusion sizes compared to similar layers formed on steels 40Cr4 and 42CrMoS4. It was found that the thermally hardened layers of steel 35CrMnSi4 after 12‑hour carburizing and steel 40Cr4 after 8‑hour carburizing exhibit maximum wear resistance. Their microstructure consists of tempered martensite, 10–15 vol. % of carbides with a size of less than 10 μm, and retained austenite – 10 vol. % in steel 35CrMnSi4 and 17 vol. % in steel 40Cr4. It was found that a carbon content of more than 1.8 wt. % on the surface of cemented layers leads to a decrease in wear resistance due to the high content (more than 30 vol. %) of large (more than 10 μm) carbides.
About the Authors
E. P. PozdnyakovBelarus
Gomel, Belarus, 48, Oktyabrya ave.
I. N. Stepankin
Belarus
Gomel, Belarus, 48, Oktyabrya ave.
References
1. Stepankin I. N., Pozdnyakov E. P. K voprosu izgotovleniya melkorazmernogo shtampovogo instrumenta iz ekonomnolegirovannyh stalej s diffuzionnym uprochneniem poverhnostnogo sloya [Small manufacturing punching tools from economically alloyed steels with a diffusion hardening]. Kuznechno‑shtampovochnoe proizvodstvo. Obrabotka materialov davleniem = Forging and stamping production. Pressure processing of materials, 2015, no. 9, pp. 25–32.
2. Stepankin I. N., Pozdnyakov E. P. Kontaktnoe iznashivanie instrumental’nyh stalej H12M, 9HS i U8A [Contact wear of tool steels Х155CrMo12–1, 90CrSi5 and C80W1]. Vestnik GGTU im. P. O. Suhogo = Bulletin of GGTU named after P. O. Sukhoi, 2015, no. 3, pp. 19–24.
3. Stepankin I. N., Astreiko A. V., Pozdnyakov E. P., Radionov A. V. K voprosu vliyaniya ostatochnogo austenita na iznosostojkost’ nauglerozhennyh sloev stali 40H i 35HGSA [On the issue of the influence of retained austenite on the wear resistance of carburized layers of steel 40Cr4 and 35CrMnSi4]. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov: sb. nauch. tr. = Modern methods and technologies for creating and processing materials: proc. Minsk, 2019, pp. 104–116.
4. Stepankin I. N., Pozdnyakov E. P. Tekhnologicheskaya plastichnost’ pri holodnom vydavlivanii gravyury shtampovogo instrumenta: prakticheskaya realizaciya [Technological plasticity during cold extrusion of die tool engraving: practical implementation]. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov: sb. nauch. tr. = Modern methods and technologies for creating and processing materials: proc. Minsk, 2017, vol. 1, pp. 207–213.
5. Lahtin Y. M., Arzamasov B. N. Himiko‑termicheskaya obrabotka metallov [Chemical‑thermal treatment of metals]. Moscow, Metallurgiya Publ., 1985, 256 p.
6. Stepankin I. N., Pankratov I.A., Ken’ko V. M., Pozdnyakov E. P., Stepankina L. V. Ustrojstvo dlya ispytaniya na kontaktnuyu ustalost’ i iznos [Contact Fatigue and Wear Test Device]. Patent BY, no. 8260, 2012.
7. Voroshnin L. G., Mendeleeva O. L., Smetkin V.A. Teoriya i tekhnologiya himiko‑termicheskoj obrabotki: uch. posobie [Theory and technology of chemical‑thermal treatment: textbook]. Minsk, Novoe znanie Publ., 2010, 304 p.
8. Kremnev L. S. Osobennosti razrusheniya instrumental’nyh materialov [Features of the destruction of tool materials]. Metallovedenie i termicheskaja obrabotka metallov = Metallurgy and heat treatment of metals, 1994, no. 4, pp. 17–22.
9. Ivanov A. S., Bogdanova M. V., Vyazhnev V. P. O revertirovannom austenite v cementovannyh sloyah nizkouglerodistyh martensitnyh stalej [About reversed austenite in cemented layers of low carbon martensitic steels]. Metallovedenie i termicheskaja obrabotka metallov = Metallurgy and heat treatment of metals, 2015, no. 2, pp. 44–48.
10. Levin V.A., Morozov E. M., Matvienko Yu. G. Izbrannye nelinejnye zadachi mekhaniki razrusheniya [Selected nonlinear problems of fracture mechanics]. Moscow, FIZMATLIT Publ., 2004, 408 p.
11. Rudenko S. P., Shipko A.A., Mosunov E. I., Valko A. L. Mikrostruktura uprochnennyh sloev vysokonapryazhennyh zubchatyh koles iz hromonikelevyh stalej [The microstructure of hardened layers of highly stressed gears made of nickel‑chromium steels]. Izvestija Nacional’noj akademii nauk Belarusi = Proceedings of the National Academy of Sciences of Belarus, 2011, no. 1, pp. 11–17.
Review
For citations:
Pozdnyakov E.P., Stepankin I.N. Influence of cementation duration on the structure and properties of structural middle carbon steel 40Cr4, 35CrMnSi4 and 42CrMoS4. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2024;(1):69-77. (In Russ.) https://doi.org/10.21122/1683-6065-2024-1-69-77