Preview

Surface morphology, internal structure and nucleation mechanism of graphite inclusions in ductile cast iron.

https://doi.org/10.21122/1683-6065-2024-4-121-129

Abstract

The surface morphology and internal structure of graphite inclusions in ductile cast iron are investigated. Based on this, the theory of graphite nucleation on solid inclusions in the melt is confirmed. It is shown that the morphology of the outer surface of spherical graphite inclusions can vary from almost smooth to consisting of successively overlapping graphite flakes. It is suggested that, depending on the thermophysical conditions of crystallization, the growth of inclusions along one of the crystallographic planes prevails: [1010] for slow cooling (scaly surface morphology of the “cabbage head” type) and [0001] for faster cooling (smooth surface).

Metallographic studies of the internal structure of the spherical graphite inclusion has revealed its segmental‑layered structure with characteristic concentric wavy lines. Inside the inclusion, characteristic zones are distinguished: the center, sectors with characteristic junctions diverging from the center, and sometimes inclusions of siliceous ferrite are found. The polycrystalline structure of the inclusion with characteristic boundaries between graphite pyramids has been confirmed. The EPMA method revealed anomalies in the distribution of carbon, magnesium, silicon, sulfur, and oxygen concentrations in the graphite inclusion. In the center, content of the magnesium, sulfur, and oxygen is significantly increased. This confirms the theory of graphite nucleation on sulfides and oxides. In some cases, an increase in the oxygen content was observed on the outer part of the inclusion, which may be due to the displacement of oxides to the periphery during the growth of the graphite inclusion in the melt. The obtained results provide clarifi ations and supplementations to the theory of heterogeneous nucleation of spheroidal graphite particles in ductile cast iron, where the central part of the spheroid is a conglomeration of complex sulfides and oxides.

About the Author

A. I. Pokrovsky
Physical‑Тechnical Institute of the National Academy of Sciences of Belarus
Belarus
Minsk, 10, Kuprevicha str.


References

1. Total Casting Tons Dip in 2019. Modern Casting, 2021, pp. 28–30.

2. Total Casting Tons Hits 112 Million. Modern Casting, 2019, pp. 22.

3. Millis K. D. [et al.]. Cast ferrous alloy. Patent US 2485760, 25.10.1949.

4. Leushin I. O., Panov A. G. Sovremennye trendy proizvodstva chugunnogo lit’ya [Modern trends in the production of cast iron]. Chernye metally = Ferrous metals, 2021, no. 7.

5. Alexandrov N. N., Bekh N. I., Zubkov M. V. Vozmozhnosti vysokoprochnogo chuguna s sharovidnym grafitom neischerpaemy. Ch. 1 [The possibilities of high‑strength cast iron with nodular graphite are inexhaustible. Part 1]. Litejnoe proizvodstvo = Foundry production, 2013, no. 11, pp. 7–11.

6. Bunin K. P., Malinochka Yu. N., Taran Yu. N. Osnovy metallografii chuguna [Fundamentals of metallography of cast iron]. Moscow, Metallurgiya Publ., 1969, 416 p.

7. Callister W. D., Rethwisch D. G. Fundamentals of materials science and engineering: an integrated approach. 4th ed. New York, John Wiley Publ., 2012, 910 p.

8. Rogotovsky A. N., Shipelnikov A.A. O sovremennyh teoriyah i gipotezah formirovaniya sharovidnogo grafita v litoj strukture chugunov [On modern theories and hypotheses of the formation of spherical graphite in the cast structure of cast iron]. Litejnoe proizvodstvo = Foundry production, 2014, no. 4, pp. 5–7.

9. Ivanov V. G., Pirozhkova V. P., Lunev V. V. Issledovanie stroeniya i formirovaniya sharovidnyh vklyuchenij v vysokoprochnom chugune [Study of the structure and formation of spherical inclusions in high‑strength cast iron]. Vostochno‑evropejskij zhurnal peredovyh tekhnologij = East European Journal of Advanced Technologies, 2016, no. 3/5, pp. 31–36.

10. Baranov A.A., Baranov D.A. K teorii obrazovaniya v chugune sharovidnogo grafita [On the theory of formation of nodular graphite in cast iron]. Metall i lit’e Ukrainy = Metal and casting of Ukraine, 2003, no. 9–10, pp. 42–45.

11. Verkhovlyuk A. M., Shumikhin V. S., Nazarenko A. V. Osobennosti rosta sharovidnyh vklyuchenij grafita v chugune [Features of the growth of spherical graphite inclusions in cast iron]. Processy lit’ya = Casting processes, 2007, no. 5, pp. 11–18.

12. Naydek V. L., Neizhko I. G., Gavrilyuk V. P. Sharovidnyj grafit v chugunah [Nodular graphite in cast iron]. Processy lit’ya = Casting processes, 2012, no. 5, pp. 33–42.

13. Naydek V. L., Verkhovlyuk A. M. Nekotorye razmyshleniya o mekhanizme obrazovaniya sharovidnogo grafita v chugune [Some thoughts on the mechanism of formation of spherical graphite in cast iron]. Processy lit’ya = Casting processes, 2014, no. 1, pp. 49–54.

14. Bazhenov V. E., Pikunov M. V. O mekhanizme vozniknoveniya grafita pri kristallizacii chugunov [On the mechanism of formation of graphite during the crystallization of cast iron]. Izvestiya VUZov. Chernaya metallurgiya = Izvestia of Universities. Ferrous metallurgy, 2012, no. 5, pp. 50–56.

15. Skaland T., Grong F., Grong T. A model for the graphite formation in ductile cast iron. Part I. Inoculation mechanisms. Metallurgical Transactions A, 1993, vol. 24, pp. 2321–2345.

16. Stefanescu D. M. Solidification and modeling of cast iron – a short history of the defining moments. Materials Science and Engineering A, 2005, vol. 413–414, pp. 322–333.

17. Ghassemali E., Hernando J. C., Stefanescu D. M. [et al.] Revisiting the graphite nodule in ductile iron. Scripta Materialia, 2019, vol. 161, pp. 66–69.

18. Alonso G., Larrañaga P., Stefanescu D. M., De la Fuente E., Natxiondo A., Suarez R. Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. International Journal of Metalcasting, 2017, vol. 11, pp. 14–26.

19. Stefanescu D. M. The meritocratic ascendance of cast iron: from magic to virtual cast iron. International Journal of Metalcasting, 2019, vol. 13, iss. 4, pp. 726–752.

20. Alonso G., Stefanescu D. M., Larranaga P., Suarez R. Graphite nucleation in compacted graphite cast iron. International Journal of Metalcasting, 2020, vol. 14, pp. 1162–1171.

21. Morrogh H., Williams W. J. Graphite formation in cast irons and in nickel‑carbon and cobalt‑carbon alloys, Iron and Steel Inst., 1947, vol. 155, no. 3, pp. 321.

22. Anikin A.A., Venig S. B., Bilenko D. I., Gribov A. N. Sharovidnyj grafit – unikal’noe morfologicheskoe obrazovanie ugleroda [Spherical graphite is a unique morphological formation of carbon]. Izvestiya Saratovskogo universiteta. Novaya seriya. Ser. Fizika = News of Saratov University. New series. Ser. Physics, 2012, vol. 12, iss. 2, pp. 18–20.

23. Monchoux J. P., Verdu C., Thollet G., Fougeres R., Reynaud A. Morphological changes of graphite spheroids during heat treatment of ductile cast irons. Acta Mater., 2001, vol. 49, no. 20, pp. 4355–4362.

24. Lux B., Minkoff I., Mollard F., Thury E. Branching of graphite crystals growing from metallic solution. in: B. Lux, I. Minkoff, Mollard (Eds.), The Metallurgy of Cast Iron. – Georgi Publishing Co., St. Saphorin, Switzerland, 1974, pp. 495–508.

25. Pokrovsky A. I. Osobennosti strukturoobrazovaniya grafitnyh vklyuchenij v vysokoprochnom chugune pri lit’e i goryachej plasticheskoj deformacii [Features of the structure formation of graphite inclusions in high‑strength cast iron during casting and hot plastic deformation]. Chernye metally = Ferrous Metals, 2023, no. 4, pp. 8–15.

26. Pokrovsky A. I. Ustrojstvo dlya vyyavleniya formy grafitnyh vklyuchenij v strukture chuguna: patent (poleznaya model’) 10652 Resp. Belarus’ [Device for identifying the shape of graphite inclusions in the structure of cast iron: patent (utility model) 10652 Rep. Belarus]. No. u20140426; application November 20, 2014; publ. 04.30.2015. Afic. bulletin / NCIU = Officer Bull. / NSIU, 2015, no. 2, pp. 124–125.

27. Pokrovsky A. I. Sposob kontrolya formy grafitnyh vklyuchenij v strukture chuguna: patent (izobretenie) 21186 Resp. Belarus’ [Method for controlling the shape of graphite inclusions in the structure of cast iron: patent (invention) 21186 Rep. Belarus]. No. a20140348, application. 06.20.2014, publ. 08.30.2017. Afic. bulletin / NCIU = Officer Bull. / NSIU, 2017, no. 4, p. 102.

28. Pokrovsky A. I. Sposob kontrolya formy grafitnyh vklyuchenij v strukture chuguna: patent (izobretenie) 21187 Resp. Belarus’ [Method for controlling the shape of graphite inclusions in the structure of cast iron: patent (invention) 21187 Rep. Belarus]. No. a20140352, application. 06.25.2014, publ. 08.30.2017. Afic. bulletin / NCIU = Officer Bull. / NSIU, 2017, no. 4, p. 102.

29. Pokrovsky A. I. Mekhanizm plasticheskoj deformacii grafitnyh vklyuchenij v vysokoprochnom chugune pri obrabotke davleniem [The mechanism of plastic deformation of graphite inclusions in high‑strength cast iron during pressure treatment]. Chernye metally = Ferrous Metals, 2023, no. 6, pp. 52–60.


Review

For citations:


Pokrovsky A.I. Surface morphology, internal structure and nucleation mechanism of graphite inclusions in ductile cast iron. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2024;(4):121-129. (In Russ.) https://doi.org/10.21122/1683-6065-2024-4-121-129

Views: 116


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)