Preview

Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY)

Advanced search

Analyzing the dynamics of changes in demand, production, and cost for lead, tin and chromium

https://doi.org/10.21122/1683-6065-2025-1-116-122

Abstract

Developments in electronics and electronic device manufacturing technologies including smartphones, computers and electric cars are significantly affecting demand. About half of the world’s tin is used in the production of solder, and the increasing number of consumers of electronics is driving up tin prices. It should be noted that the existing methods of lead recycling do not pay attention to the main impurities in the composition of the metal, which include arsenic, selenium, tellurium, bismuth, antimony, silver, copper, nickel, zinc and tin. However, they are valuable products in their own right, as their recovery during lead recycling is much more cost-effective than their extraction from ore materials. The addition of chromium in the steel manufacturing process is known to increase the corrosion resistance of steel. These steel alloys are known as stainless steel, which accounts for most of the commercial use of metallic chromium. Chromium electroplating, commonly known as chromium plating, is the other major application of chromium. In connection with the sanctions and rising prices for chromium and stainless steels of the 20Х13–40Х13 range used in the production of medical, food equipment and hardware, stop valves for the oil and gas industry, the issue of using domestic resources of the Republic of Belarus is acute. From the above data, it can be seen that over the period from 2020 to 2023, Sn prices have increased by 25.4 to 46.4 times, Pb by 1.28 to 2.9 times, Cr the period from the period from 2016 to 2023 by 2,08 to 31,9 times.

About the Authors

A. S. Panasyugin
Belarusian National Technical University
Belarus

Minsk, 65, Nezavisimosti ave.



N. P. Masherova
Belarusian State Technological University
Belarus

Minsk, 13a, Sverdlova str.



I. A. Pankovets
BSW – Management Company of Holding “BMC”
Belarus

Zhlobin, Gomel region, 37, Promyshlennaya str.



S. V. Martseva
Belarusian State Technological University
Belarus

Minsk, 13a, Sverdlova str.



N. D. Pavlovsky
Grodno State Medical University
Belarus

Grodno, 80, Gorky str.



References

1. Bayanova T. B., Rundqvist T. V., Serov P.A., Korchagin A. U., Karpov S. M. Paleoproterozojskij Fedorovo‑Panskij rassloennyj EPG‑kompleks severo‑vostochnoj chasti Arkticheskogo regiona Baltijskogo shchita: novye U–Pb (po baddeleitu) i Sm–Nd (po sul’fidnym mineralam) dannye [Paleoproterozoic Fedorovo‑Pan stratified PGE complex of the north‑eastern part of the Arctic region of the Baltic Shield: new U‑Pb (for baddeleyite) and Sm‑Nd (for sulfide minerals) data]. Doklady Akademii nauk = Reports of the Academy of Sciences, 2017, vol. 472, no. 1, pp. 52–56.

2. Ekimova N.A., Serov P.A., Bayanova T. B., Elizarova I. R., Mitrofanov F. P. Raspredelenie RZE v sul’fidnyh mineralah i Sm–Nd datirovanie rudogeneza rassloennyh bazitovyh intruzij [REE distribution in sulfide minerals and Sm–Nd dating of oreogenesis of stratified basite intrusions]. Doklady Akademii nauk = Reports of the Academy of Sciences, 2011, vol. 436, no. 1, pp. 75–78.

3. Serov P.A., Ekimova N.A. Vozmozhnosti Sm–Nd datirovaniya rudnyh processov s ispol’zovaniem sul’fidov [Opportunities of Sm–Nd dating of ore processes using sulphides]. Vestnik MSTU = Bulletin of MSTU, 2009, vol. 12, no. 3, pp. 456–460.

4. Serov P.A., Ekimova N.A., Bayanova T. B., Mitrofanov F. P. Sul’fidnye mineraly – novye geohronometry pri Sm–Nd datirovanii rudogeneza rassloennyh mafit‑ul’tramafitovyh intruzij Baltijskogo shchita [Sulfide minerals – new geochronometers for Sm–Nd dating of oreogenesis of stratified mafic‑ultramafic intrusions of the Baltic Shield]. Litosfera = Lithosphere, 2014, no. 4, pp. 11–21.

5. Rimskaya-Korsakova M. N., Dubinin A. V. Redkozemel’nye elementy v sul’fidah podvodnyh gidrotermal’nyh istochnikov Atlanticheskogo okeana [Rare‑earth elements in sulfides of submarine hydrothermal vents of the Atlantic Ocean]. Doklady Akademii nauk = Reports of the Academy of Sciences, 2003, vol. 389, no. 5, pp. 672–676.

6. Rimskaya-Korsakova M. N., Dubinin A. V., Ivanov V. M. Opredelenie RZE v sul’fidnyh mineralah metodom ICP‑MS posle ionoobmennogo koncentrirovaniya [Determination of REE in sulfide minerals by ICP‑MS after ion‑exchange concentration]. Zhurnal analiticheskoj himii = Journal of Analytical Chemistry, 2003, vol. 58, no. 9, pp. 975–979.

7. Chashchin V. V., Bayanova T. B., Mitrofanov F. P., Serov P.A. Malosul’fidnye platinometal’nye rudy paleoproterozojskogo Monchegorskogo plutona i ego yuzhnogo obramleniya (Kol’skij poluostrov, Rossiya): geologicheskaya harakteristika i izotopnogeohronologicheskie svidetel’stva polihronnosti rudno‑magmaticheskih sistem [Low‑sulfide platinometallic ores of the Paleoproterozoic Monchegorsk pluton and its southern frame (Kola Peninsula, Russia): geological characterisation and isotope‑geochronological evidence of polychrony of ore‑magmatic systems]. Geologiya rudnyh mestorozhdenij = Geology of ore deposits, 2016, vol. 58, no. 1, pp. 41–63.

8. Gangumalla Srinivasa Rao, Santosh Kumar, Rama Chandrudu Arasada. Multi‑scale potential field data integration using fuzzy C‑means clustering for automated geological mapping of north Singhbhum mobile belt, Eastern Indian Craton. Minerals, 2023, vol. 13, iss. 8.

9. Sasan Farhadi, Peyman Afzal, Mina Boveiri Konari, Lili Daneshvar Saein, Behnam Sadeghi. Combination of machine learning algorithms with concentration‑area fractal method for soil geochemical anomaly detection in sediment‑hosted Irankuh Pb–Zn deposit, central Iran. Minerals, 2022, no. 12.

10. Yongjian Wang, Honghai Fan, Yaqing Pang, Wei Xiao. Geochemical characteristics of chlorite in Xiangshan uranium ore field, south China and its exploration implication. Minerals, 2022, no. 12.

11. Chunhui Liu, Chunxia Qiu, Luoqi Wang, Jie Feng, Sensen Wu, Yuanyuan Wang. Application of aster remote sensing data to porphyry copper exploration in the Gondwana region. Minerals, 2023, no. 13.

12. Shi Li, Chang Liu and Jianping Chen. Mineral prospecting prediction via transfer learning based on geological big data: a case study of Huayuan, Hunan, China. Minerals, 2023, no. 13.

13. Ning Lu, Yongzai Xi, Hongshan Zheng, Weidong Gao, Yongbo Li, Yu Liu, Zhiqiang Cui, Guixiang Liao, Junjie Liu. Development of a hybrid fixed‑wing UAV aeromagnetic survey system and an application study in Chating deposit. Minerals, 2023, vol. 13.

14. Cao Z., Cao H., Tao C., Li J., Yu Z., Shu L. Rare earth element geochemistry of hydrothermal deposits from Southwest Indian Ridge. Acta Oceanol. Sin., 2012, vol. 31, pp. 62–69.

15. Gudelius D., Zeh A., Almeev R. R., Wilson A. H., Fischer L.A., Schmitt A. K. Zircon melt inclusions in mafic and felsic rocks of the Bushveld Complex – Constraints for zircon crystallization temperatures and partition coefficients. Geochimica et Cosmochimica Acta, 2020, vol. 289, pp. 158–181.

16. Jiang S.-Y., Slack J. F., Palmer M. R. Sm–Nd dating of the giant Sullivan Pb–Zn–Ag deposit, British Columbia. Geology, 2000, vol. 28, no. 8, pp. 751–754.

17. Jiao Q., Wang L., Deng T., Xu D., Chen G., Yu D., Ye T., Gao Y. Origin of the ore‑forming fluids and metals of the Hetai goldfield in Guangdong Province of South China: Constraints from C‑H‑O‑S‑Pb‑He‑Ar isotopes. Ore Geol. Rev., 2017, vol. 88, pp. 674–689.

18. Kong P., Deloule E., Palme H. REE‑bearing sulfide in Bishunpur (LL3.1), a highly unequilibrated ordinary chondrite. Earth Plan. Sci. Lett., 2000, vol. 177, pp. 1–7.

19. Kotelnikov A. E., Kolmakova D.A., Kotelnikova E. M. Determination of the copper‑nickel ores formation sequence of the Kun‑Manye deposit (Amur region). RUDN Journal of Engineering Researches, 2020, no. 1, pp. 48–57.

20. Li H., Kong H., Guo B.-Y., Soh Tamehe L., Zhang Q., Wu Q.-H., Xi X.-S. Fluid inclusion, H–O–S isotope and rare earth element constraints on the mineralization of the Dong’an Sb deposit, South China. Ore Geol. Rev., 2020, vol. 126, pp. 103–759.

21. Lodders K. An experimental and theoretical study of rare‑earth‑element partitioning between sulfides (FeS, CaS) and silicate and applications to enstatite achondrites. Meteorifics and Planetary Science, 1996, vol. 31, pp. 149–166.

22. Mao G., Hua R., Gao J., Li W., Zhao K., Long G., Lu H. Existing forms of REE in gold‑bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China. J. Rare Earths, 2009, vol. 27, pp. 1079–1087.

23. Mills R.A., Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N MidAtlantic Ridge. Geochim. Gosmochim. Acta, 1995, vol. 59, no. 17, pp. 3511–3524.

24. Morgan J. W., Wandless G.A. Rare earth element distribution in some hydrothermal elements: evidence for crystallographic control. Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 973–980.

25. Ruan B., Liao M., Sun B., Chen C. Origin and nature of parental magma and sulfide segregation of the Baixintan magmatic Ni–Cu sulfide deposit, southern central Asian orogenic belt (Caob), NW China: Insights from mineral chemistry of chromite and silicate minerals. Minerals, 2020, vol. 10, pp. 1–20.


Review

For citations:


Panasyugin A.S., Masherova N.P., Pankovets I.A., Martseva S.V., Pavlovsky N.D. Analyzing the dynamics of changes in demand, production, and cost for lead, tin and chromium. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2025;(1):116-122. (In Russ.) https://doi.org/10.21122/1683-6065-2025-1-116-122

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)