Analyzing the dynamics of changes in demand, production, and cost for lead, tin and chromium
https://doi.org/10.21122/1683-6065-2025-1-116-122
Abstract
Developments in electronics and electronic device manufacturing technologies including smartphones, computers and electric cars are significantly affecting demand. About half of the world’s tin is used in the production of solder, and the increasing number of consumers of electronics is driving up tin prices. It should be noted that the existing methods of lead recycling do not pay attention to the main impurities in the composition of the metal, which include arsenic, selenium, tellurium, bismuth, antimony, silver, copper, nickel, zinc and tin. However, they are valuable products in their own right, as their recovery during lead recycling is much more cost-effective than their extraction from ore materials. The addition of chromium in the steel manufacturing process is known to increase the corrosion resistance of steel. These steel alloys are known as stainless steel, which accounts for most of the commercial use of metallic chromium. Chromium electroplating, commonly known as chromium plating, is the other major application of chromium. In connection with the sanctions and rising prices for chromium and stainless steels of the 20Х13–40Х13 range used in the production of medical, food equipment and hardware, stop valves for the oil and gas industry, the issue of using domestic resources of the Republic of Belarus is acute. From the above data, it can be seen that over the period from 2020 to 2023, Sn prices have increased by 25.4 to 46.4 times, Pb by 1.28 to 2.9 times, Cr the period from the period from 2016 to 2023 by 2,08 to 31,9 times.
About the Authors
A. S. PanasyuginBelarus
Minsk, 65, Nezavisimosti ave.
N. P. Masherova
Belarus
Minsk, 13a, Sverdlova str.
I. A. Pankovets
Belarus
Zhlobin, Gomel region, 37, Promyshlennaya str.
S. V. Martseva
Belarus
Minsk, 13a, Sverdlova str.
N. D. Pavlovsky
Belarus
Grodno, 80, Gorky str.
References
1. Палеопротерозойский Федорово‑Панский расслоенный ЭПГ‑комплекс северо‑восточной части Арктического региона Балтийского щита: новые U–Pb (по бадделеиту) и Sm–Nd (по сульфидным минералам) данные / Т. Б. Баянова [и др.] // Доклады Национальной академии наук Беларуси. – 2017. – Т. 472. – № 1. – С. 52–56.
2. Распределение РЗЭ в сульфидных минералах и Sm–Nd датирование рудогенеза расслоенных базитовых интрузий / Н. А. Екимова [и др.] // Доклады Национальной академии наук Беларуси. – 2011. – Т. 436, № 1. – C. 75–78.
3. Серов, П. А. Возможности Sm–Nd датирования рудных процессов с использованием сульфидов / П. А. Серов, Н. А. Екимова // Вестник МГТУ. – 2009. – Т. 12. – № 3. – С. 456–460.
4. Сульфидные минералы – новые геохронометры при Sm–Nd датировании рудогенеза расслоенных мафитультрамафитовых интрузий Балтийского щита / П. А. Серов [и др.] // Литосфера. – 2014. – № 4. – С. 11–21.
5. Римская-Корсакова, М. Н. Редкоземельные элементы в сульфидах подводных гидротермальных источников Атлантического океана / М. Н. Римская‑Корсакова, А. В. Дубинин // Доклады Национальной академии наук Беларуси. – 2003. – Т. 389. –
6. № 5. – С. 672–676.
7. Римская-Корсакова, М. Н. Определение РЗЭ в сульфидных минералах методом ICP‑MS после ионообменного концентрирования / М. Н. Римская‑Корсакова, А. В. Дубинин, В. М. Иванов // Журнал аналитической химии. – 2003. – Т. 58. – № 9. – С. 975–979.
8. Малосульфидные платинометальные руды палеопротерозойского Мончегорского плутона и его южного обрамления (Кольский полуостров, Россия): геологическая характеристика и изотопно‑геохронологические свидетельства полихронности рудно‑магматических систем / В. В. Чащин [и др.] // Геология рудных месторождений. – 2016. – Т. 58. – № 1. – С. 41–63.
9. Gangumalla Srinivasa Rao. Multi‑scale potential field data integration using fuzzy C‑means clustering for automated geological mapping of north Singhbhum mobile belt, Eastern Indian Craton / Gangumalla Srinivasa Rao Santosh Kumar, Rama Chandrudu Arasada // Minerals. – 2023. – Vol. 13. – iss. 8.
10. Combination of machine learning algorithms with concentration‑area fractal method for soil geochemical anomaly detection in sediment‑hosted Irankuh Pb‑Zn deposit, central Iran / Sasan Farhadi [et al.] // Minerals. – 2022. – № 12.
11. Geochemical characteristics of chlorite in Xiangshan uranium ore field, south China and its exploration implication / Yongjian Wang [et al.] // Minerals. – 2022. – № 12.
12. Application of aster remote sensing data to porphyry copper exploration in the Gondwana region / Chunhui Liu [et al.] // Minerals. – 2023. – № 13.
13. Shi Li. Mineral prospecting prediction via transfer learning based on geological big data: a case study of Huayuan, Hunan, China / Shi Li, Chang Liu, Jianping Chen // Minerals. – 2023. – № 13.
14. Development of a hybrid fixed‑wing UAV aeromagnetic survey system and an application study in Chating deposit / Ning Lu [et al.] // Minerals. – 2023. – № 13.
15. Rare earth element geochemistry of hydrothermal deposits from Southwest Indian Ridge / Z. Cao [et al.] // Acta Oceanol. Sin. – 2012. – Vol. 31. – P. 62–69.
16. Zircon melt inclusions in mafic and felsic rocks of the Bushveld Complex – Constraints for zircon crystallization temperatures and partition coefficients / D. Gudelius [et al.] // Geochimica et Cosmochimica Acta. – 2020. – Vol. 289. – P. 158–181.
17. Jiang, S.-Y. Sm–Nd dating of the giant Sullivan Pb–Zn–Ag deposit, British Columbia / S.‑Y. Jiang, J. F. Slack, M. R. Palmer // Geology. – 2000. – Vol. 28. – № 8. – P. 751–754.
18. Origin of the ore‑forming fluids and metals of the Hetai goldfield in Guangdong Province of South China: Constraints from C‑HO‑S‑Pb‑He‑Ar isotopes / Q. Jiao [et al.] // Ore Geol. Rev. – 2017. – Vol. 88. – P. 674–689.
19. Kong, P. REE‑bearing sulfide in Bishunpur (LL3.1), a highly unequilibrated ordinary chondrite / P. Kong, E. Deloule, H. Palme // Earth Plan. Sci. Lett. – 2000. – Vol. 177. – P. 1–7.
20. Kotelnikov, A. E. Determination of the copper‑nickel ores formation sequence of the Kun‑Manye deposit (Amur region) / A. E. Kotelnikov, D.A. Kolmakova, E. M. Kotelnikova // RUDN Journal of Engineering Researches. – 2020. – № 1. – P. 48–57.
21. Fluid inclusion, H–O–S isotope and rare earth element constraints on the mineralization of the Dong’an Sb deposit, South China / H. Li [et al.] // Ore Geol. Rev. – 2020. – Vol. 126. – P. 103–759.
22. Lodders, K.An experimental and theoretical study of rare‑earth‑element partitioning between sulfides (FeS, CaS) and silicate and applications to enstatite achondrites / K. Lodders // Meteorifics and Planetary Science. – 1996. – Vol. 31. – P. 149–166.
23. Existing forms of REE in gold‑bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China / G. Mao [et al.] // J. Rare Earths. – 2009. – Vol. 27. – P. 1079–1087.
24. Mills, R.A. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid‑Atlantic Ridge / R.A. Mills, H. Elderfield // Geochim. Gosmochim. Acta. – 1995. – Vol. 59. – № 17. – P. 3511–3524.
25. Morgan, J. W. Rare earth element distribution in some hydrothermal elements: evidence for crystallographic control / J. W. Morgan, G.A. Wandless // Geochim. Cosmochim. Acta. – 1980. – Vol. 44. – P. 973–980.
26. Origin and nature of parental magma and sulfide segregation of the Baixintan magmatic Ni–Cu sulfide deposit, southern central Asian orogenic belt (Caob), NW China: Insights from mineral chemistry of chromite and silicate minerals / B. Ruan [et al.] // Minerals. – 2020. – Vol. 10. – P. 1–20.
Review
For citations:
Panasyugin A.S., Masherova N.P., Pankovets I.A., Martseva S.V., Pavlovsky N.D. Analyzing the dynamics of changes in demand, production, and cost for lead, tin and chromium. . 2025;(1):116-122. (In Russ.) https://doi.org/10.21122/1683-6065-2025-1-116-122