Preview

Pressure treatment of aluminum–magnesium alloys solidified under high centrifugal forces

https://doi.org/10.21122/1683-6065-2025-3-36-49

Abstract

The process of centrifugal casting of AMg5 and AMg6 alloys was tested under gravitational load coefficients (GLC) of 300g and 500g. It was found that the positive effect of increased GLC on melt crystallization is more pronounced when casting alloys with higher alloying element content. This promotes not only grain refinement and melt purification from brittle iron‑silicon compounds but also enhances the solubility of alloying elements in α(Al). Thus, castings from AMg6 obtained at 500g, compared to those at 300g, showed 1.1 and 1.3 times higher strength and ductility, respectively. Compared to the best samples of cast AMg6 alloy produced according to GOST 1583–93, centrifugal casting at 500g yielded an AMg6 alloy with strength, ductility, and hard‑ ness increased by 15–25, 10–50, and 40 %, respectively. Moreover, the alloy exhibits a structure equivalent to that obtained through solution heat treatment. Using the rolling method, the process of plastic deformation of AMg5 and AMg6 aluminum‑ magnesium alloys with structures obtained via casting at 500g was studied. As a result of developing various rolling routes, the AMg6 cast alloy obtained at 500g was strengthened, achieving a 1.6‑fold increase in strength and hardness at a total deformation of 60 %. The resulting AMg6 material had a strength ranging from 411 to 435 MPa and an elongation of 10 to 13 %, de‑ pending on the tensile direction. The results demonstrate the promise and necessity of further research into producing AMg alloys via centrifugal casting under GLCs of 300–500g followed by plastic deformation.

About the Authors

A. V. Chekulaev
NPO Center
Belarus

Minsk,
19, Sharangovicha str



P. A. Vityaz
Aerospace Activities Department of the Presidium of the National Academy of Sciences of Belarus
Belarus

Minsk,
66, Nezavisimosti ave



References

1. Svidunovich N.A. [et al.] Vybor i primenenie materialov: ucheb. posobie: v 5 t. T. 4. Vybor i primenenie cvetnyh metallov i splavov [Selection and application of materials: textbook: in 5 volumes. Volume 4. Selection and application of non-ferrous metals and alloys]. Minsk, Belaruskaya navuka, 2020, 616 p.

2. Sorokina S.A. (comp.) Termicheskaya obrabotka i metallograficheskoe issledovanie deformiruemyh alyuminievyh splavov: metod. ukazaniya k vypolneniyu lab. rabot dlya studentov ochnoj formy obucheniya po napravleniyu podgotovki 22.03.02 “Metallurgiya”, profil’ podgotovki “Metallovedenie, termicheskaya obrabotka stalej i vysokoprochnyh splavov” [Heat treatment and metallographic examination of deformable aluminum alloys: method. instructions for performing lab. works for full-time students in the direction of training 22.03.02 “Metallurgy”, training profile “Metal science, heat treatment of steels and high-strength alloys”]. Nizhny Novgorod, 2016, 36 p.

3. Beletsky V. M., Krivov G.A., Fridlyander I. N. (ed.) Alyuminievye splavy: sostav, svojstva, tekhnologiya, primenenie: sprav. [Aluminum alloys: composition, properties, technology, application: reference book]. Kiev, Komintekh Publ., 2005, 365 p.

4. Koryagin Yu. D., Il’in S. I. Osobennosti rekristallizacii deformiruemyh alyuminij-magnievyh splavov so skandiem [Features of recrystallization of deformable aluminum-magnesium alloys with scandium]. Vestnik YuUrG U. Seriya: Metallurgiya = Bulletin of SUSU. Series: Metallurgy, 2017, no. 1.

5. Golovkin P.A. O faktore kolichesжзtvennogo soderzhaniya intermetallidnyh faz v prirode razrusheniya pokovok iz splava AMg6 [About the factor of quantitative content of intermetallic phases in the nature of destruction of AMg6 alloy open forgings]. Tekhnologiya legkih splavov = Technology of light alloys, 2022, no. 2.

6. Belyaev A. I., Bochvar O. S., Bujnov N. N. [et al.], Fridlyandera I. N. (ed.) Metallovedenie alyuminiya i ego splavov: sprav. [Metallurgy of aluminum and its alloys: reference]. Moscow, Metallurgiya Publ., 1983, 280 p.

7. Deaquino-Lara R., Gutierrez-Castaneda E., Estrada-Guel I. [et al.] Structural characterization of aluminium alloy 7075-graphite composites fabricated by mechanical alloying and hot extrusion. Materials and Design, 2014, vol. 53, pp. 1104–1111.

8. Vityaz P. А., Ilyushenko A. Ph., Sobol S. Ph., Savich V. V., Churik M. N. Poluchenie vysokoprochnyh deformiruemyh alyuminievyh splavov tipa AMg10 [Producing high-strength deformable aluminum alloys of type AMg10]. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika‑technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical‑technical series, 2017, no. 4, pp. 7–16.

9. Koryagin Yu. D. Razuprochnenie nagartovannogo splava AMg6 pri skorostnom nagreve v intervale temperatur 100–300 °C [Softening of work-hardened AMg6 alloy during high-speed heating in the temperature range of 100–300 °C]. Vestnik YuUrG U. Seriya: Metallurgiya = Bulletin of SUSU. Series: Metallurgy, 2012, no. 15.

10. Mondolfo L. F. Struktura i svojstva alyuminie vyh splavov [Structure and properties of aluminum alloys]. Moscow, Metallurgiya Publ., 1979, 640 p.

11. Alyuminievye splavy. Struktura i svojstva polufabrikatov iz alyuminievyh splavov: sprav. [Aluminum alloys. Structure and properties of semi-finished products from aluminum alloys: reference]. Moscow, Metallurgiya Publ., 1979, 432 p.

12. Chuvil’deev V. N., Nieh T. G., Gryaznov M. Yu. [et al.] Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scripta Materialia, 2004, vol. 50, iss. 6, pp. 861–865.

13. Aryshenskiy V. Yu., Grechnikova A. F., Drits A. M., Sosedkov S. M. Vybor tekhnologicheskih parametrov dlya snizheniya razmera zerna v osnove i plakirovke obshivochnyh listov iz alyuminievyh splavov [Selection of technological parameters for reducing the grain size in the base and cladding of cladding sheets made of aluminum alloys]. Tekhnologiya legkih splavov = Technology of light alloys, 2010, no. 3, pp. 22–30.

14. Chekulayeu A. V., Baradavka V. I., Vityaz P.A. Poluchenie alyuminievo-magnievyh splavov s uluchshennymi svojstvami pri ih kristallizacii v usloviyah vysokih centrobezhnyh sil [Production of aluminum-magnesium alloys with improved properties during their crystallization under conditions of high centrifugal forces]. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika‑tekhnichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physical‑technical series, 2025, vol. 70, no. 2, pp. 124–135.

15. Byeong-Hyeon Lee, Sung-Hoon Kim, Jun-Hyoung Park [et al.] Role of Mg in simultaneously improving the strength and ductility of Al–Mg alloys. Materials Science and Engineering A, 2016, vol. 657, pp. 115–122.

16. Maltsev M. V. Metallografiya promyshlennyh cvetnyh metallov i splavov [Metallography of industrial non-ferrous metals and alloys]. Moscow, Metallurgiya Publ., 1970, 364 p.

17. Predko P. Yu., Shanin N. D., Bakhteeva N. D. [et al.] Novye podhody k polucheniyu vysokoprochnyh alyuminievyh splavov sistemy Al–Zn–Mg–Cu [New approaches to producing high-strength aluminum alloys of the Al–Zn–Mg–Cu system]. Tekhnologiya legkih splavov = Technology of light alloys, 2023, no. 1.

18. Gorbachiova V. I., Terentjeva A. V., Turchanin M.A., Dreval L.A. Issledovanie vliyaniya soderzhaniya zheleza na obrazovanie zhelezosoderzhashchih faz v litejnyh alyuminievyh splavah [Research of influence of the iron content on formation of iron-bearing phases in foundry aluminum alloys]. Lit’e i metallurgiya = Foundry production and metallurgy, 2013, no. 4, pp. 74–81.

19. Ammer V.A. Kristallizaciya metalla v otlivkah: ucheb. posobie [Crystallization of metal in castings: textbook]. Voronezh, Voronezh. gos. tekhn. un-t Publ., 2012, 156 p.

20. Loginov Yu. N., Antonenko L. V. Vliyanie deformacii na uroven’ mekhanicheskih harakteristik pressovannyh zagotovok iz splava AMg6 [Influence of deformation on the level of mechanical characteristics of pressed blanks made of AMg6 alloy]. Zagotovitel’nye proizvodstva v mashinostroenii = Blank production in mechanical engineering, 2010, no. 7, pp. 14–19.

21. Loginov Yu. N. Vliyanie konfiguracii ochaga deformacii pri pressovanii na rekristallizaciyu alyuminievyh splavov [Influence of the deformation zone configuration during pressing on the recrystallization of aluminum alloys]. Innovacii v materialovedenii i metallurgii: materialy IV Mezhdunar. interakt. nauch.‑prakt. konf. = Innovations in materials science and metallurgy: Proc. IV Int. interactive scientific‑practical. conf. Ekaterinburg, UrFU Publ., 2015, pp. 239–242.

22. Rusakov G. M., Illarionov A. G., Loginov Yu. N. Vzaimosvyaz’ kristallograficheskih orientirovok zeren pri goryachej deformacii i rekristallizacii v alyuminievom splave AMg6 [Relationship between crystallographic orientations of grains during hot deformation and recrystallization in aluminum alloy AMg6]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2014, no. 12, pp. 15–21.

23. Powder diffraction file. Data cards. ICDD. Swarthmore. Pensylvania, 1948–2021.

24. Lyubimov A. K., Kozhanov D.A. Modelirovanie vida strukturnogo elementa gibkih tkanyh kompozitov pri staticheskom rastyazhenii s primeneniem metoda konechnyh elementov v ANSYS [Modeling the appearance of a structural element of flexible woven composites under static tension using the finite element method in ANSYS]. Komp’yuternye issledovaniya i modelirovanie = Computer research and modeling, 2016, vol. 8, no. 1, pp. 113–120.

25. Kablov E. N., Belov E. V., Trapeznikov A. V. [et al.] Osobennosti uprochneniya i kinetika stareniya litejnogo alyuminievogo vysokoprochnogo splava na osnove sistemy Al–Si–Cu–Mg [Features of hardening and kinetics of aging of cast aluminum high-strength alloy based on the Al–Si–Cu–Mg system]. Aviacionnye materialy i tekhnologii = Aviation materials and technologies, 2021, no. 2.

26. Ostanina T. V., Shveikin A. I., Trusov P. V. Izmel’chenie zerennoj struktury metallov i splavov pri intensivnom plasticheskom deformirovanii: eksperimental’nye dannye i analiz mekhanizmov [Refining of the grain structure of metals and alloys under severe plastic deformation: experimental data and analysis of mechanisms]. Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnichesko‑ go universiteta. Mekhanika = Bulletin of Perm National Research Polytechnic University. Mechanics, 2020, no. 2, pp. 85–111.


Review

For citations:


Chekulaev A.V., Vityaz P.A. Pressure treatment of aluminum–magnesium alloys solidified under high centrifugal forces. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2025;(3):36-49. (In Russ.) https://doi.org/10.21122/1683-6065-2025-3-36-49

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)