Preview

Theoretical and technological aspects of production mechani‑cally alloyed powders for the production of coatings and products by additive methods

https://doi.org/10.21122/1683-6065-2021-4-90-105

Abstract

The established regularities of the formation of powders based on iron and nickel, obtained by the method of mechanical alloying and intended for the deposition of thermal spraying coatings, as well as the manufacture of products by layer‑by‑layer synthesis. The structure, phase composition and properties of materials are investigated. Powders consist of particles with a size of 20–70 microns, differ in the submicrocrystalline type structures, and nonequilibrium phase composition. Thermal spray coatings made of them have a set of properties that significantly exceed the properties of coatings made of commercially available materials. The diameter of the grains of the material obtained by the SLМ method from the synthesized powder is 1.5–2.0 times smaller than that produced from the powder of 316L steel, and the heat resistance is higher.

About the Authors

F. G. Lovshenko
Belarusian‑Russian University
Belarus
Mogilev, Belarus, 43, Mira ave.


A. S. Fedosenko
Belarusian‑Russian University
Belarus
Mogilev, Belarus, 43, Mira ave.


E. I. Marukovich
Institute of Technology of Metals of National Academy of Sciences of Belarus
Belarus
Mogilev, Belarus, 11, Bialynitskogo‑Biruli str.


References

1. Zlenko M.A., Popovich A.A., Mutylina I. N. Additivnye tehnologii v mashinostroenii [Additive technologies in mechanical engineering]. Sankt‑Peterburg, Politehnicheskij universitet Publ., 2013, 222 p.

2. The Current State of Additive Manufacturing in Wind Energy Systems [Electronic resource] / B. Post [et al.]. – Mode of access: https://info.ornl.gov/sites/publications/Files/Pub103095.pdf. – Date of access: 28.06.19

3. Thomas, D. S. Costs and Cost Effectiveness of Additive Manufacturing /D.S. Thomas, S. W. Gilber// [Electronic resource]. – Mode of access: http://dx.doi.org/10.6028/NIST.SP.1176. – Date of access: 28.05.2019.

4. Research and Development of Additive Manufactured Bladed Disks [Elec‑tronic resource] / J.A. Bayliff [et al.]. – Mode of access: http://publications.lib.chalmers.se/records/fulltext/250277/250277.pdf. – Date of access: 29.06.2019.

5. Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718 / T. Petrat [et al.]// Physics Procedia, 2016, vol. 83, pp. 761–768.

6. Madara, S. R. Review of Recent Developments in 3‑D Printing of Turbine Blades / S. R. Madara, Ch. P. Selvan // European Journal of Advances in Engineering and Technology, 2017, vol. 4 (7), pp. 497–509.

7. Emswiler, Sh. Additive Manufacturing Success through Simulation / Sh. Emswiler // Аnsys Аdvantage, 2018, Iss. 3, pp. 10–18.

8. Rani, A. M.A. Manufacturing methods for medical artificial prostheses– a re‑view / A. M.A. Rani, R. Fua‑Nizan, M. Y. Din / Malaysian Journal of Fundamental and Applied Sciences. Special Issue on Medical Device and Technology, 2017, pp. 464–469.

9. Impact of Digital manufacturing on Health Care Industry [Electronic resource] / P. K. Parital [et al.]. – Mode of access: https://eprints.qut.edu.au/114661/1/Impact%20of%20Digital%20manufcaturing%20on%20Healthcare%20Industry%20 %20.pdf. – Date of access: 22.06.2019.

10. Mergulhao, M. V. Characteristics of Biometallic Alloy to Additive Manufactur‑ing Using Selective Laser Melting Technology / M. V. Mergulhao, M. D. M. Das Neves. Journal of Biomaterials and Nanobiotechnology, 2018, vol. 9, pp. 89–99.

11. Rahmati, S. Application of rapid prototyping for development of custom–made orthopedics prostheses: An investigative study / S. Rahmati, F. Farahmand, F. Ab‑baszadeh. Int J Advanced Design and Manufacturing Technology, 2010, vol. 3, no. 2, pp. 11–16.

12. Lovshenko G. F., Lovshenko F. G., Hina B. B. Nanostrukturnye mehanicheski legirovannye materialy na osnove metallov [Nanostructured mechanically alloyed materials based on metals]. Mogilev, Belorussko‑Rossijskij universitet Publ., 2008, 679 p.

13. Vitjaz’ P.A., Lovshenko F. G., Lovshenko G. F. Mehanicheski legirovannye splavy na osnove aljuminija i medi [Mechanically alloyed alloys based on aluminum and copper]. Minsk, Belaruskaja navuka Publ., 1998, 352 p.

14. Lovshenko F. G., Lovshenko G. F. Zakonomernosti formirovanija fazovogo sostava, struktury i svojstv mehanicheski legirovannyh materialov [Regularities of the formation of the phase composition, structure and properties of mechanically alloyed materials:]. Mogilev, Belorussko‑Rossijskij universitet Publ., 2016, 420 p.

15. Lovshenko F. G., Lovshenko G. F. Тeoreticheskie i tehnologicheskie aspekty sozdanija nanostrukturnyh mehanicheski legirovannyh materialov na osnove metallov [Theoretical and technological aspects of creating nanostructured mechanically alloyed materials based on metals]. Mogilev, Belorussko‑Rossijskij universitet Publ., 2005, 276 p.

16. Lovshenko F. G. 50 let poroshkovoj metallurgii v Belarusi. Istorija, dostizhenija, perspektivy [50 years of powder metallurgy in Belarus. History, achievements, prospects]. Minsk, GNPO poroshkovoj metallurgii Publ., 2010, 632 p.

17. Lovshenko F. G. Novye resursosberegajushhie tehnologii i kompozicionnye materialy [New resource‑saving technologies and composite materials]. Moscow, Jenergoatomizdat Publ., 2004, 350 p.

18. Lovshenko F. G. Nanokompozicionnye mashinostroitel’nye materialy: opyt razrabotki i primenenija [Nanocomposite engineering materials: development and application experience]. Grodno, GrGU Publ., 2006, 403 p.

19. Lovshenko F. G. Raschet maksimal’nyh koncentracij reagirujushhih komponentov v shihte, podvergaemoj reakcionnomu mehanicheskomu legirovaniju [Calculation of the maximum concentrations of the reacting components in the charge subjected to mechanical reaction alloying]. Vestnik Belorussko‑Rossijskogo universiteta = Bulletin of the Belarusian‑Russian University, 2011, no. 2 (31), pp. 64–75.

20. Avdejchik S. V. Tribohimicheskie tehnologii funkcional’nyh kompozicionnyh materialov. Chast’ 1. Model’nye predstavlenija [Tribochemical technologies of functional composite materials. Part 1. Model representations]. Grodno, GGAU Publ., 2007, 320 p.

21. Avdejchik S. V. Tribohimicheskie tehnologii funkcional’nyh kompozicionnyh materialov. Chast’ 2. Tehnologija i opyt primenenija [Tribochemical technologies of functional composite materials. Part 2. Technology and application experience]. Grodno, GGAU Publ., 2008, 399 p.

22. Rebinder P.A. Vibropomol – naibolee jeffektivnyj metod izmel’chenija [Vibrating grinder – the most efficient grinding method]. Stroitel’nye materialy = Construction Materials, 1956, no.1, pp. 8–10.

23. Morgulis M. L. Vibracionnoe izmel’chenie materialov [Vibration grinding of materials]. Moscow, Promstrojizdat Publ., 1957, 106 p.

24. Ovchinnikov P. F. Vibroreologija [Vibrorheology]. Kiev, Naukova Dumka Publ., 1983, 270 p.

25. Shelamov V.A., Litvincev A. I. Fiziko‑himicheskie osnovy poluchenija polufabrikatov iz spechennyh aljuminievyh poroshkov [Physicochemical bases for obtaining semifinished products from sintered aluminum powders]. Moscow, Metallurgija Publ., 1970, 278 p.

26. Andreeva N. G., Rastrigina Je. F. O mehanizme obrazovanija metallicheskogo kontakta v splavah tipa SAP [On the mechanism of metal contact formation in SAP‑type alloys]. Poroshkovaja metallurgija = Powder metallurgy, 1966, no. 3, pp. 27–36.


Review

For citations:


Lovshenko F.G., Fedosenko A.S., Marukovich E.I. Theoretical and technological aspects of production mechani‑cally alloyed powders for the production of coatings and products by additive methods. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2021;(4):90-105. (In Russ.) https://doi.org/10.21122/1683-6065-2021-4-90-105

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)