Preview

Destruction investigation of foundry sand-liquid-glass cores under compression

https://doi.org/10.21122/1683-6065-2023-3-41-48

Abstract

Foundry sand cores based on organic binders have required tensile, compressive, and bending breaking points, as well as have an excellent knocking‑out ability. However, increased requirements for the environmental friendliness of the foundry have led to a renewed interest in foundry sand cores based on inorganic binders including the sand‑liquid‑glass core‑making technology. Foundry sand‑liquid‑glass cores are significantly inferior to foundry sand cores based on organic binders in terms of a knocking‑out ability due to using a sufficiently large mass fraction of sodium silicate solute to achieve required breaking points of foundry sand‑liquid‑glass cores under tension, compression, and bending, which is accompanied by a deterioration in a knocking‑out ability. Experimental studies aimed at selecting a composition of a sand‑liquid‑glass core mixture, which provides a required compressive breaking point of a foundry sand‑liquid‑glass core in combination with an improved knocking‑out ability, are carried out. Experimental results for destruction of foundry sand‑liquid‑glass cores under compression, which are showing a possibility of achieving a combination of a required compressive breaking point and a good knocking‑out ability, are presented. Ways to increase a strength of a foundry sand‑liquid‑glass core in places of contact with core locks, strengthen the most stressprone areas of a foundry core, and decrease its compressive breaking point by reducing a mass fraction of sodium silicate solute, thereby improving a knocking‑out ability, are considered. Structural robustness test results for foundry sand‑liquid‑glass cores of the investigated composition under compression, as well as an effect of adding a circulating core mixture to the composition on a compressive breaking point are discussed. An effect for inhomogeneities of a foundry sand‑liquid‑glass core on its compressive breaking point is presented. Mathematical expressions for calculating a destruction probability of a foundry core containing an inhomogeneity are obtained.

About the Authors

Y. I. Gutko
Luhansk State University named after V. Dahl
Russian Federation
Luhansk, Luhansk People’s Republic, Russia, 20‑a, Molodezhny sq.


V. V. Voytenko
Luhansk State University named after V. Dahl
Russian Federation
Luhansk, Luhansk People’s Republic, Russia, 20‑a, Molodezhny sq.


References

1. Zolotorevskiy V. S., Belov N.A., Glazoff M. V. Casting Aluminum Alloys. Amsterdam: Elsevier, 2007. 544 p.

2. Kurdyumov A. V., Belov V. D., Pikunov M. V., Chursin V. M., Gerasimov S. P., Moiseev V. S. Proizvodstvo otlivok iz splavov tsvetnykh metallov: Uchebnik [Casting Production of Non‑Ferrous Alloys: Textbook]. Moscow, MISiS Publ., 2011, 615 p.

3. Brown J. R. Foseco Non‑Ferrous Foundryman’s Handbook. 11th Ed. Oxford: Butterworth Heinemann, 1994. 309 p.

4. Gupta A. R., Aloni S. N., Kumar R., Binzade H. A Review on Issues Related to Manual Core‑Making Process in Foundry Industry. International Journal for Scientific Research & Development. Ahmedabad, India: IJSRD, 2016. Vol. 3. No. 11. P. 355–357.

5. Psimenos A. Kh., Mileeva T. S., Sipos M. M., Eder G., Melnikov A. P. Aktual’nyye razrabotki svyazuyushchikh sistem PURCold‑Box dlya izgotovleniya sterzhney firmy “Furtenbach GmbH”, Avstriya [Current Developments of PUR‑Cold‑Box Binding Systems for Core‑Making by Furtenbach GmbH, Austria]. 26 p.

6. Sanacheva G. S., Dubova I. V., Vostrikova N. M., Leontiev E. G., Gilmanshina T. R. “Kholodnyye” sterzhni – perspektiva povysheniya kachestva liteynoy produktsii remontno‑mekhanicheskoy bazy Achinskogo filiala RIK [“Cold” Cores are Prospect for Quality Improvement of Foundry Products for Repair and Mechanical Base in Achinsk Branch of Russian Engineering Company]. Journal of Siberian Federal University. Engineering & Technologies. Krasnoyarsk: SibFU, 2014, no. 4, pp. 456–461.

7. Psimenos A. Kh., Eder G., Sipos M. M. Smoly kholodnogo otverzhdeniya s neznachitel’nym vydeleniyem vrednykh veshchestv i zapakha (Cold‑Box), absolyutno ne imeyushchiye aromaticheskikh rastvoriteley [Cold‑Curing Resins with Low Emission of Harmful Substances and Smell (Cold‑Box), which are Absolutely Free of Aromatic Solvents]. Lit’e i metallurgija = Foundry production and metallurgy, 2011, no. 2 (60), pp. 23–31.

8. Shchetinin A.A., Ammer V.A., Turishchev Yu. Yu. Preimushchestva i perspektivy primeneniya kholodnotverdeyushchikh smesey pri izgotovlenii otvetstvennykh i vysokonagruzhennykh otlivok dlya aviatsionnoy promyshlennosti [Advantages and Prospects for Use of Cold‑Hardening Mixtures in Production of Critical and High‑Load Castings for Aviation Industry]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Voronezh State Technical University, 2011, no. 11 (2), pp. 68–70.

9. Doroshenko S. P., Avdokushin V. P., Rusin K., Matsashek I. Formovochnyye materialy i smesi [Molding Materials and Mixtures]. Kiev, High School Publ., 1990, 415 p.

10. Boldin A. N., Davydov N. I., Zhukovsky S. S. Liteynyye formovochnyye materialy. Formovochnyye, sterzhnevyye smesi i pokrytiya [Foundry Molding Materials. Molding Mixtures, Core Mixtures, and Coatings]. Moscow, Mashinostroenie Publ., 2006, 507 p.

11. Lehte K., Boehm R. CORDIS – svyazuyushcheye na neorganicheskoy osnove. Svoystva i opyt ispol’zovaniya [CORDIS is Inorganic‑Based Binder. Properties and Experience of Use]. 6 p.

12. Bieda S. CORDIS Inorganic Binder System. Properties and Experience. Technical’2006. Nowa Sól, Poland, 2006, pp. 63–71.

13. Holtzer M., Grabowska B. Modern Sand Moulds with Inorganic Binder. Technical’2008. Nowa Sól, Poland, 2008, pp. 93–98.

14. Davidenko A. K., Ivanov B. K., Okhrimenko G. P., Ponomarenko O. I. Samotverdeyushchiye zhidkostekol’nyye formovochnosterzhnevyye smesi dlya izgotovleniya otlivok energeticheskogo oborudovaniya [Self‑Hardening Liquid‑Glass Molding and Core Mixtures for Casting Production of Power Equipment]. Metall i lit’е = Metal and Foundry, 2018, no. 3–4 (298–299), pp. 34–39.

15. Illarionov I. E., Petrova N. V. Zhidkostekol’nyye smesi, otverzhdayemyye produvkoy uglekislym gazom [Liquid‑Glass Mixtures Cured by Blowing with Carbon Dioxide]. Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R. E. Alekseeva = Works of Nizhny Novgorod State Technical University. Nizhny Novgorod, NNSTU Publ., 2011, no. 2 (87), pp. 208–213.

16. Karateev A. M., Ponomarenko O. I., Berlizeva T. V., Kalkamanova O. S., Yurchenko V. V. Opyt i perspektivy ispol’zovaniya smesey na osnove zhidkogo stekla s efirnymi otverditelyami [Experience and Prospects for Use of Mixtures Based on Liquid Glass with Ether Hardeners]. Metall i lit’e = Metal and Foundry, 2018, no. 3–4 (298–299), pp. 40–46.

17. Zan X. L., Fan Z. T., Wang J. N., Pan D. Performances of Sodium Silicate Sand Hardened by Microwave Heating. Foundry. Shenyang: FICMES, 2008, no. 57 (4), pp. 384–387.

18. Teplyakov S. D., Safronov V.A. Zhidkiye otverditeli binarnogo sostava dlya zhidkostekol’nykh KhTS [Liquid Hardeners of Binary Composition for Liquid‑Glass Cold‑Hardening Mixtures]. Liteinoye proizvodstvo = Foundry production, 1989, no. 4, pp. 7–8.

19. Zhukovsky S. S., Safronov V.A., Teplyakov S. D., Zadov A. E., Muravyova T. S. Metody regulirovaniya ostatochnoy prochnosti zhidkostekol’noy KhTS s atsetatami etilenglikolya [Regulation Methods for Residual Strength of Liquid‑Glass Cold‑Hardening Mixtures with Ethylene Glycol Acetates]. Liteinoye proizvodstvo =Foundry production, 1990, no. 4, pp. 12–14.

20. Ponomarenko O. I., Evtushenko N. S., Berlizeva T. V. Vliyaniye zhidkikh otverditeley s raznymi dobavkami na svoystva zhidkostekol’nykh smesey [Influence of Liquid Hardeners with Different Additives on Properties of Liquid‑Glass Mixtures]. Liteinoye proizvodstvo =Foundry production, 2011, no. 4, pp. 21–24.

21. Borsuk P.A., Ignatiev V. N. Zhidkostekol’nyye smesi s zhidkimi otverditelyami [Liquid‑Glass Mixtures with Liquid Hardeners]. Liteinoye proizvodstvo=Foundry production, 1982, no. 8, pp.18–20.

22. Nikiforov A. P. Zhidkiy otverditel’ dlya samotverdeyushchikh zhidkostekol’nykh smesey [Liquid Hardener for Self‑Hardening Liquid‑Glass Mixtures]. Liteinoye proizvodstvo =Foundry production, 1988, no. 8, pp. 26–27.

23. Berlizeva T. V., Ponomarenko O. I. Issledovaniye vliyaniya kompleksnoy razuprochnyayushchey dobavki na svoystva kholodnotverdeyushchikh smesey na zhidkom stekle [Influence Research of Complex Softening Additive on Properties of Cold‑Hardening LiquidGlass Mixtures]. Metallurgicheskaya i gornorudnaya promyshlennost’ = Metallurgical and Mining Industry. 2014, no. 4, pp. 27–30.

24. Berlizeva T. V. Ispol’zovaniye kholodnotverdeyushchikh smesey na zhidkom stekle s primeneniyem tsiklokarbonatov [Use of Cold‑Hardening Liquid‑Glass Mixtures with Cyclic Carbonates]. Vestnik NTU “KhPI” = Bulletin of NTU “KhPI”, 2013, no. 42 (1015), pp. 21–26.


Review

For citations:


Gutko Y.I., Voytenko V.V. Destruction investigation of foundry sand-liquid-glass cores under compression. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2023;(3):41-48. (In Russ.) https://doi.org/10.21122/1683-6065-2023-3-41-48

Views: 206


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)