Mechanisms of modification of magnesium– manganese alloys
https://doi.org/10.21122/1683-6065-2023-4-48-51
Abstract
It is shown that the main modifying phases cannot serve as centers of crystallization of α‑phase microcrystals during solidification of magnesium‑manganese alloys.The superheating modification of these alloys is an adsorption‑nanostructural process. It is shown that adsorbed hydrogen acts as a modifying element of the structure of castings of magnesium‑manganese alloys. The mechanism of their modification by overheating consists of a significant decrease in the concentration of adsorbed hydrogen due to the predominance of its desorption processes from elementary magnesium and manganese nanocrystals in liquid magnesiummanganese alloys. The mechanism of modification of the main modifying phases of these alloys consists of a significant decrease in the concentration of adsorbed hydrogen in the melts through a significant decrease in the concentration of dissolved hydrogen.
About the Authors
E. I. MarukovichBelarus
Minsk, Belarus, 24, Ya. Kolas str.
V. Yu. Stetsenko
Belarus
Minsk, Belarus, 24, Ya. Kolas str.
A. V. Stetsenko
Belarus
Mogilev, Belarus, 43, Mira ave.
References
1. Kurdyumov A. V., Belov V. D., Pikunov M. V. Proizvodstvo otlivok iz splavov cvetnyh metallov: uchebnik [Production of castings from non‑ferrous metal alloys]. Moscow, Izd. Dom MISiS Publ., 2011. 615 p.
2. Chuhrov M. V. Modificirovanie magnievyh splavov [Modification of magnesium alloys]. Moscow, Metallurgiya Publ., 1972. 176 p.
3. Dric M. E. Diagrammy sostoyaniya sistem na osnove alyuminiya i magniya: spravochnik [Aluminum and Magnesium System Health Diagrams]. Moscow, Nauka Publ., 1977. 228 p.
4. Spravochnik himika [Chemist’s Handbook]. Leningrad, Himiya Publ., 1971, vol. 1. 1072 p.
5. Stetsenko V. Yu. Teoreticheskie i tekhnologicheskie osnovy polucheniya zagotovok povyshennoj iznosostojkosti iz siluminov s vysokodispersnoj invertirovannoj strukturoj: avtoref. dis. dokt. tekhn. nauk [Theoretical and technological bases for production of blanks of increased wear resistance from silumins with highly dispersed inverted structure: autorefit. dis. Doc. technical sciences]. Minsk, 2021. 60 p.
6. Marukovich E. I., Stetsenko V. Yu., Stetsenko A. V. Nanostrukturnaya kristallizaciya litejnyh splavov [Nanostructured crystallization of casting alloys]. Lit’e i metallurgiya = Foundry production and metallurgy, 2022, no. 3, pp. 13–19.
7. Marukovich E. I., Stetsenko V. Yu. Nanostrukturnaya teoriya metallicheskih rasplavov [Nanostructured metal melt theory].
8. Lit’e i metallurgiya = Foundry production and metallurgy, 2020, no. 3, pp. 7–9.
9. Zhuk N. P. Kurs teorii korrozii i zashchity metallov [Corrosion Theory and Metal Protection course]. Moscow, Metallurgiya Publ., 1976. 474 p.
10. Antonova M. M. Svojstva gidridov metallov [Properties of metal hydrides]. Kiev, Naukova dumka Publ., 1975. 128 p.
11. Kolachev B.A., Levinskij Yu. V. Konstanty vzaimodejstviya metallov s gazami: spravochnik [Metal‑Gas Interaction Constants: Reference]. Moscow, Metallurgiya Publ., 1987. 368 p.
12. Zhuhovickij A.A., Shvarcman L.A. Fizicheskaya himiya [Physical chemistry]. Moscow, Metallurgiya Publ., 1987. 688 p.
13. Lidin R.A., Molochko V.A., Andreeva L. L. Himicheskie svojstva neorganicheskih veshchestv [Chemical properties of inorganic substances]. Moscow, Himiya Publ., 2000. 480 p.
Review
For citations:
Marukovich E.I., Stetsenko V.Yu., Stetsenko A.V. Mechanisms of modification of magnesium– manganese alloys. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2023;(4):48-51. (In Russ.) https://doi.org/10.21122/1683-6065-2023-4-48-51