Food stainless steel. Characteristics. Spheres of application
https://doi.org/10.21122/1683-6065-2025-2-83-91
Abstract
Specificity of food preparation provides a number of repeated sanitary and hygienic measures with the use of hot water, washing and disinfecting solutions of different pH, concentration, temperature and time of exposure, which can provoke the beginning of corrosion process on poor‑quality equipment, both on the external and internal surfaces of the equipment. The thermal operating temperature of cookware ranges from –15 °C (refrigerator) to +100 °C (up to +250 °C when used in an oven). All the above‑mentioned steel grades fully meet the corrosion resistance requirements for cookware. Tanks made of these steels cannot be subject to corrosion under any normal operating conditions specified by the manufacturer. The main criterion for the suitability of a particular stainless steel for food applications is its chemical inertness and the permissible amounts of migration of the chemical elements that make up the steel from the products into the modelling medium.
About the Authors
B. M. NemenenokBelarus
Minsk, Belarus, 65, Nezavisimosti ave.
A. R. Tsyganov
Belarus
Minsk, Belarus, 1/3, Slavinskogo str.
A. S. Panasyugin
Belarus
Minsk, Belarus, 65, Nezavisimosti ave.
I. A. Pankovets
Belarus
Zhlobin, 37, Promyshlennaya str.
N. P. Masherova
Belarus
Minsk, Belarus, 13a, Sverdlova str.
N. D. Pavlovsky
Belarus
Grodno, Belarus, 80, Gorky
References
1. Pumpyanskii D.A., Pyshmintsev I. Yu., Bityukov S. M., Gervas’ev M. A., Gusev A.A. Osobennosti mikrostruktury, fazovogo sostava i vozmozhnosti uprochneniya nerzhaveyushchih stalej s 13–17 % Cr [Features of microstructure, phase composition and strengthening capability of stainless steels with 13–17 % Cr]. Izvestiya vysshih uchebnyh zavedenij. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 2022, vol. 65, no. 9, pp. 644–653.
2. 2 Trépanier C. [et al.] Effect of modification of oxide layer on NiTi stent corrosion resistance. Journal of biomedical materials research, 1998, pp. 433–440.
3. Modassir Akhtar, Akhil Khajuria, Kumar V. S. [et al.] Evolyuciya mikrostruktury pri modelirovanii svarki ferritnoj/martensitnoj stali, modificirovannoj borom [Evolution of microstructure during welding simulation of boron modified P91 steel]. Fizika metallov i metallovedenie = Phys. Metals Metallogr., 2019, vol. 120, 672–685.
4. Dergach T.A. Vliyanie bora na mikrostrukturu i svojstva trub iz nizkoulerodistoj austenitnoj hromonikelevoj stali [Effect of boron on the microstructure and properties of pipes made of low‑carbon austenitic chromium‑nickel steel]. Voprosy atomnoj nauki i tekhniki = Issues of atomic science and technology, 2005, no. 5, pp. 80–86.
5. Takayuki Takei, Murotsune Yabe, Azusa Ooi, Eiji Tada. Effect of boron distribution on the intergranular corrosion resistance of UNS S32506 duplex stainless steels. Journal of the electrochemical society, 2019, vol. 166, iss. 16, pp. 375–381.
6. Zepon G., Nogueira R. P., Kiminami C. S. [et al.] Electrochemical corrosion behavior of spray‑formed boron‑modified supermartensitic stainless steel. Metall. Mater. Trans. A, 2017, vol. 48, pp. 2077–2089.
7. Wang H.A., Wang T. Comparative study of high boron alloys with 2.0 wt% B based on 304 and 316 stainless steels. Materials Letters, 2021, vol. 285.
8. Zepon G., Nascimento A. R. C., Kasama A. H. Design of wear resistant boron‑modified supermartensitic stainless steel by spray forming process. Materials & Design, 2015, vol. 83, pp. 214–223.
9. Cetin M. Effect of boron added corrosion behavior of cast 304 stainless steel. Protection of metals and physical chemistry of surface, 2019, vol. 55, pp. 1217–1225.
10. Berezovskaya V. V. Sistema legirovaniya vysokoazotistyh austenitnyh stalej, struktura, mekhanicheskie i korrozionnye svojstva [Alloying system of high‑nitrogen austenitic steels, structure, mechanical and corrosion properties]. Innovacii v materialovedenii i metallurgii: materialy I Mezhdunar. interakt. NPK, 13–19 dek. 2011 g. = Innovations in materials science and metallurgy: proc. i intern. interactive scientific and practical conference, december 13–19, 2011. Ekaterinburg, Publishing house of the Ural University, 2012, part 1, pp. 257–266.
11. Bannykh O.A., Blinov V. M., Kostina M. V. Azot kak legiruyushchij element v splavah na osnove zheleza [Nitrogen as an alloying element in iron‑based alloys]. Fazovye i strukturnye prevrashcheniya v stalyah: trudy shkoly‑seminara. Vyp. 3 = Phase and structural transformations in steels: works of the school‑seminar. Iss. 3. Magnitogorsk, Dom pechati Publ., 2003, pp. 157–192.
12. Pridancev M. V., Talov N. P., Levin F. M. Vysokoprochnye austenitnye stali [High‑strength austenitic steels]. Moscow, Metallurgiya Publ., 1969, 247 p.
13. Kostina M. V., Bannykh O.A., Blinov V. M. Osobennosti stalej, legirovannyh azotom [Features of steels alloyed with nitrogen]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2000, no. 12, pp. 3–6.
14. Nakamura N., Tsuchiyma T., Takaki S. Effect of structural factors of the mechanical properties on the high nitrogen austenitic steels. Materials Science Forum, 1999, vol. 318–320, pp. 209–214.
15. Shpaydel M. O. Novye azotsoderzhashchie austenitnye nerzhaveyushchie stali s vysokimi prochnost’yu i plastichnost’yu [New nitrogen‑containing austenitic stainless steels with high strength and ductility]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2005, no. 11, pp. 9–13.
16. Blinov V. M., Elistratov A. V., Morozova E. I. [et al.] Vliyanie termicheskoj obrabotki na strukturnye prevrashcheniya i svojstva vysokoazotistyh stalej [Effect of heat treatment on structural transformations and properties of high‑nitrogen steels]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2000, no. 6, pp. 19–24.
17. Bannykh O.A., Blinov V. M., Kostina M. V. [et al.] Vliyanie rezhimov goryachej prokatki i termicheskoj obrabotki na strukturu, mekhanicheskie i tekhnologicheskie svojstva austenitnoj azotsoderzhashchej stali 05H22AG15N8M2F‑Sh [Influence of hot rolling and heat treatment modes on the structure, mechanical and technological properties of austenitic nitrogen‑containing steel 05Kh22AG15N8M2F‑Sh]. Metally = Metals, 2006, no. 4, pp. 33–41.
18. Sokol I. Ya., Ulyanin E.A., Feldgandler E. G. [et al.]. Struktura i korroziya metallov i splavov: atlas. Sprav. izd. [Structure and corrosion of metals and alloys: atlas. Reference ed.]. Moscow, Metallurgiya Publ., 1989.
19. Gulyaev B. B. Sintez splavov [Synthesis of alloys]. Moscow, Metallurgiya Publ., 1984.
20. Brown M. P. Mikrolegirovanie stali [Microalloying of steel]. Kyiv: Naukova dumka Publ., 1982.
21. Braun M. P., Matyuvenko N. I. Analiticheskij raschet poverhnostnoj aktivnosti niobiya, cirkoniya i lantana [Analytical calculation of the surface activity of niobium, zirconium and lanthanum]. Redkozemel’nye metally i splavy = Rare earth metals and alloys. Moscow, Nauka Publ., 1971, pp. 73–75.
22. Stanley J. T. Magnetic properties of irradiated austenitic stainless steel. J. Nucl. Mater., 1979, vol. 85–86, pp. 787–91.
23. Suzuki T., Kojima H., Suzuki K.An experimental study of the martensite nucleation and growth in 18/8 stainless steel. Technical Report of ISSR, Ser. A, 1976, no. 793, 37 p.
24. Ruban S. V., Gusev M. N., Rybin S. V. Novye rezul’taty nizkotemperaturnyh mekhanicheskih ispytanij obrazcov stali 12H18N10T, neobluchennyh i obluchennyh bystrymi nejtronami [New results of low‑temperature mechanical tests of 12X18N10T steel samples, unirradiated and irradiated with fast neutrons]. Yadernyj potencial Kazahstana: sb. st. 6‑go seminara = Nuclear potential of Kazakhstan: collection of articles from the 6th seminar. Almaty, 2009.
Review
For citations:
Nemenenok B.M., Tsyganov A.R., Panasyugin A.S., Pankovets I.A., Masherova N.P., Pavlovsky N.D. Food stainless steel. Characteristics. Spheres of application. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2025;(2):83-91. (In Russ.) https://doi.org/10.21122/1683-6065-2025-2-83-91