Preview

Analysis of stainless steel analogs to AISI (USA), EN (Europe), JIS (Japan), GB (CHINA), GOST (CIS) Systems

https://doi.org/10.21122/1683-6065-2025-3-88-97

Abstract

Over the past 15–20 years, a substantial amount of imported equipment for various purposes has been acquired. When such equipment breaks down, there is often a need to replace damaged components. However, with the imposition of international sanctions, certain difficulties have arisen. One of the major challenges involves the inability to accurately determine the equivalency between the materials used in original foreign components and those available in the CIS, including their heat treatment methods and mechanical properties. This issue complicates the selection of suitable domestic alternatives.

About the Authors

B. M. Nemenyonok
Belarusian National Technical University
Belarus

Minsk, 
65, Nezavisimosti ave



A. S. Panasyugin
Belarusian National Technical University
Belarus

Minsk, 
65, Nezavisimosti ave



А. R. Tsyganov
International Institute of Management and Entrepreneurship
Belarus

Minsk,
1/3, Slavinskogo str.



N. P. Masherova
Belarusian State Technological University
Belarus

Minsk,
13a, Sverdlova str.



I. L. Kulinich
Belarusian National Technical University
Belarus

Minsk,
65, Nezavisimosti ave.



Ya. Lin
Belarusian National Technical University
Belarus

Minsk, 
65, Nezavisimosti ave.



References

1. Grenaderov A. S., Oskirko V. O., Zakharov A. N. [et al.]. Struktura i svojstva austenitnoj stali AISI 316L posle bezvodorodnogo azotirovaniya [Structure and properties of austenitic AISI 316L steel after hydrogen-free nitriding]. Uspekhi prikladnoj fiziki = Successes of Applied Physics, 2022, vol. 10, no. 5, pp. 469–479.

2. Siebeneicher E. G., Steigerwald S. Tekhnologiya izgotovleniya i materialy [Manufacturing technology and materials]. Moscow, Omega Publ., 2007, 189 p.

3. Rode E. Ya. Fiziko-himicheskoe izuchenie okislov i gidrookislov metalov [Physico-chemical study of metal oxides and hydroxides]. Zhurnal neorganicheskoj himii = Journal of Inorganic Chemistry, 1956, no. 1, pp. 1430.

4. Atlas of Eh-pH diagrams: Intercomparison of thermodynamic databases. National Institute of Advanced Industrial Science and Technology, 2005, 285 p.

5. Liao P. K., Spear K. E. Sistema B-Cr (bor-hrom) [The B-Cr (boron-chromium) system]. Byulleten’ fazovyh diagramm splavov = Bulletin of phase diagrams of alloys, 1986, no. 7, pp. 232–237.

6. Yakovlev S. V. (ed.). Inzhenernoe oborudovanie zdanij i sooruzhenij: encikl. [Engineering equipment of buildings and structures]. Moscow, Strojizdat Publ.,1994, 511 p.

7. Takayuki T. [et al.] Effect of Boron Distribution on the Intergranular Corrosion Resistance of UNS S32506 Duplex Stainless Steels. Journal of the Electrochemical Society, 2019, no. 166, pp. 375–381.

8. Dergach T.A. Vliyanie bora na mikrostrukturu i svojstva trub iz nizkoulerodistoj austenitnoj hromonikelevoj stali [The effect of boron on the microstructure and properties of pipes made of low-carbon austenitic chromium-nickel steel]. Voprosy atomnoj nauki i tekhniki = Issues of atomic science and technology, 2005, no. 5, pp. 80–86.

9. Zepon G. [et al.] Electrochemical corrosion behavior of spray-formed boron-modified supermartensitic stainless steel. Metal Mater Trans A, 2017, no. 48, pp. 2077–2089.

10. Wang H.A., Wang T. Comparative study of high boron alloys with 2.0 wt% B based on 304 and 316 stainless steels. Materials Letters, 2021, vol. 285.

11. Pumpyansky D.A., Pyshmintsev I. Yu., Bityukov S. M., Gervasiev M.A., Gusev A.A. Osobennosti mikrostruktury, fazovogo sostava i vozmozhnosti uprochneniya nerzhaveyushchih stalej s 13–17 % Cr [Features of microstructure, phase composition and the possibility of strengthening stainless steels with 13–17 % Cr]. Izvestiya vysshih uchebnyh zavedenij. Chernaya Metallurgiya = News of higher educational institutions. Ferrous Metallurgy, 2022, no. 65, pp. 644–653.

12. Zepon G. [et al.] Design of wear resistant boron-modified supermartensitic stainless steel by spray forming process. Materials & Design, 2015, no. 83, pp. 214–223.

13. Pridantsev M. V., Talov N. P., Levin F. M. Vysokoprochnye austenitnye stali [High-strength austenitic steels]. Moscow, Metallurgiya Publ., 1969, 247 p.

14. Shpaidel M. O. Novye azotsoderzhashchie austenitnye nerzhaveyushchie stali s vysokimi prochnost’yu i plastichnost’yu [New nitrogen-containing austenitic stainless steels with high strength and ductility]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2005, no. 11, pp. 9–13.

15. Bannykh O.A., Blinov V. M., Kostina M. V. Azot kak legiruyushchij element v splavah na osnove zheleza [Nitrogen as an alloying element in iron-based alloys]. Fazovye i strukturnye prevrashcheniya v stalyah: trudy shkoly‑seminara. Vyp. 3 = Phase and structural transformations in steels: Proceedings of the seminar school. Vol. 3. Magnitogorsk: Dom pechati Publ., 2003, pp. 157–192.

16. Crane F., Charles J., Furness J. Selection and use of engineering materials. Oxford, Boston, Butterworth Heinemann, 1997, p. 343.

17. Trépanier C. [et al.] Effect of modification of oxide layer on NiTi stent corrosion resistance. Journal of biomedical materials research, 1998, no. 43, pp. 433–440.

18. Akhtar M. [et al.] Evolyuciya mikrostruktury pri modelirovanii svarki ferritnoj/martensitnoj stali, modificirovannoj borom [Evolution of microstructure in modeling welding of ferrite/martensitic steel modified with boron]. Fizika metallov i metallovedenie = Physics of metals and metal science, 2019, vol. 120, no. 7, pp. 731–745.

19. Brown M. P. Mikrolegirovanie stali [Microalloying steel]. Kyiv, Naukova Dumka Publ., 1982.

20. Brown M. P., Matyuvenko N. I. Analiticheskij raschet poverhnostnoj aktivnosti niobiya, cirkoniya i lantana [Analytical calculation of surface activity of niobium, zirconium and lanthanum]. Redkozemel’nye metally i splavy = Rare earth metals and alloys. Moscow, Nauka Publ., 1971, pp. 73–75.

21. Surikov V. I., Kalishevich G. I., Geld P. V. Termodinamicheskie harakteristiki soedinenij Cr3Si, Cr3Ge, V3Si, V3Ge [Thermodynamic characteristics of the connections Cr3Si, Cr3Ge, V3Si, V3Ge]. Zhurnal fizicheskoj himii = J. physical Chemistry, 1975, vol. 49, no. 2, pp. 555–556.

22. Gulyaev B. B. Sintez splavov [Synthesis of alloys]. Moscow, Metallurgiya Publ., 1984.

23. Stanley J. T., Care K. R. Ferrite formation in neutron irradiated type 316 Stainless Steel. Metallurgical Transactions A, 1975, vol. 6A, pp. 531–535.

24. Berezovskaya V. V. Sistema legirovaniya vysokoazotistyh austenitnyh stalej, struktura, mekhanicheskie i korrozionnye svojstva [Alloying system for high-nitrogen austenitic steels, structure, mechanical and corrosion properties]. Innovacii v materialovedenii i metallurgii: materialy I Mezhdunar. interakt. nauch.‑prakt. konf. = Innovations in materials science and metallurgy: materials I International. interact. conf. Yekaterinburg, Izd-vo Ural’skogo un-ta, 2012, part 1, pp. 257–266.

25. Cetin M. Effect of boron added corrosion behavior of cast 304 stainless steel. Protection of Metals and Physical Chemistry of Surface, 2019, vol. 55, pp. 1217–1225.


Review

For citations:


Nemenyonok B.M., Panasyugin A.S., Tsyganov А.R., Masherova N.P., Kulinich I.L., Lin Ya. Analysis of stainless steel analogs to AISI (USA), EN (Europe), JIS (Japan), GB (CHINA), GOST (CIS) Systems. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 2025;(3):88-97. (In Russ.) https://doi.org/10.21122/1683-6065-2025-3-88-97

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-6065 (Print)
ISSN 2414-0406 (Online)